Tag: All NCERT Questions solved Maths Class 10th

  • Exercise-8.2, Class 10th, Maths, Chapter 8, NCERT

    Q1. Evaluate the following

    (i) sin60cos30+sin30cos60

    Solution
    Use the sine addition formula: sin(x+y)=sinxcosy+cosxsiny
    So the expression = sin(60+30)=sin90=1.

    Answer: 1.


    (ii) 2tan245+cos230sin260

    Compute step by step (digit-by-digit):

    • tan45=1tan245=12=1.So 2tan245=21=2.

    • cos30=32cos230=(32)2=34

    • sin60=32sin260=(32)2=34

    Thus cos230sin260=3434=0

    So whole expression =2+0=2

    Answer: 2.


    (iii) cos45sec30+cosec30

    Compute values:

    • cos45=22

    • sec30=1cos30=13/2=23

    • cosec30=1sin30=11/2=2

    Denominator =23+2=2+233=2(1+3)3.

    So

    cos45sec30+cosec30=2/22(1+3)/3=2431+3=64(1+3).

    Rationalize (multiply numerator & denominator by 31):

    64(1+3)3131=6(31)4(31)=6(31)8.

    Answer: 6(31)8 (equivalently 64(1+3)


    (iv) sin30+tan45cosec60sec30+cos60+cot45

    Compute each value:

    • sin30=12

    • tan45=1

    • cosec60=1sin60=13/2=23

    So numerator N=12+123=3223

    Denominator:

    • sec30=23

    • cos60=12

    • cot45=1

    So denominator D=23+12+1=32+23.

    Thus

    ND=322332+23.

    Multiply numerator and denominator by 23 to clear fractions:

    ND=33433+4.

    (You can leave it in that exact form or approximate: 0.13006.)

    Answer: 33433+4


    (v) 5cos260+4sec230tan245sin230+cos230

    (That is the expression as printed in the PDF.)

    Compute step-by-step:

    • cos60=12cos260=145cos260=514=54.

    • sec30=23sec230=434sec230=443=163.

    • tan45=1tan245=1

    So numerator =54+1631. Put over common denominator 12:

    1512+64121212=15+641212=6712.

    Denominator:
    sin230=(12)2=14,cos230=(32)2=34
    So denominator =14+34=1

    Hence whole value =6712

    Answer: 6712


    Q2. Choose the correct option and justify your choice

    (Recall: tan30=13, tan45=1)

    (i) 2tan2301+tan230=?

    Compute: tan230=13
    Numerator =213=23
    Denominator =1+13=43.
    Quotient =2/34/3=24=12.

    12 equals cos60 and also equals sin30 (Both are 1/2.)
    So both options (B) and (D) numerically match; the usual textbook answer gives (B) cos60(but note it is also equal to sin30).

    Answer: (B) cos60 (value =12; also equals sin30).


    (ii) 1tan2451+tan245=?

    tan45=1tan245=1. So numerator =11=0 Denominator =1+1=2. Quotient =0.

    Answer: (D) 0.


    (iii)sin2A=2sin” — for which  A among choices 0,30,45,60

    Use identity sin2A=2sinAcosA. Hence we need
    2sinAcosA=2sinA. Subtract 2sinA: 2sinA(cosA1)=0. So either sinA=0 or cosA=1. Both give A=0 (in the given choice list).

    Answer: (A) 0.


    (iv) 2tan2301tan230=?

    Compute: tan230=13. Numerator =213=23 Denominator =113=23 Quotient =1

    Which option equals 1? Among the listed options in the book, none of cos60, sin60, tan60, sin30 equals 1. So the numeric value is 1 — if forced to choose from those printed options the closest intended match in many sources is (A) cos60 is incorrect; the correct result is 1 (so none of the four multiple-choice labels equals 1). (If the printed MCQ had different labels, pick the one equal to 1.)


    Q3. If tan(A+B)=3 and tan(AB)=13; 0<A+B90; A>B. Find A and B.

    Let x=A+B, y=AB Then tanx=3x=60 (since 0<x90).
    tany=13y=30 (acute value).

    Now

    A=x+y2=60+302=45,B=xy2=60302=15.

    Answer: A=45, B=15.


    Q4. State whether the following are true or false. Justify.

    (i) sin(A+B)=sinA+sinB  — False.
    Counterexample: let A=B=30.

    LHS= sin60=320.8660.

    RHS= sin30+sin30=12+12=1 Not equal.

    (ii) The value of sinθ increases as θ increases. — True (for 0θ90. On [0,90] sine is strictly increasing (you can see ddθsinθ=cosθ>0 there, or check values from the standard table).

    (iii) The value of cosθ increases as θ increases. — False (for 0θ90, cosθ decreases from 1to 0).

    (iv) sinθ=cosθ for all θ. — False. They are equal only at specific angles (e.g. θ=45 in [0,90], not for all θ.

    (v) cotA is not defined for A=0. — True. cotA=cosAsinA and sin0=0 so cotangent is undefined at 0