Tag: Class 10th Exercise 5.3 Maths Solution

  • Exercise-5.3, Class 10th, Maths, Chapter 5, NCERT

    Exercise 5.3 — Solutions (Questions 1–20)

    Useful formulas

    an=a+(n1)d,Sn=n2(2a+(n1)d)=n2(a+l).


    1. Find the sum of the following APs

    (i) 2,7,12, (10 terms).
    a=2, d=5, n=10

    S10=102(22+95)=5(4+45)=549=245.

    (ii) 37,33,29,(12 terms).
    a=37, d=4, n=12

    S12=122(2(37)+114)=6(74+44)=6(30)=180.

    (iii) 0.6,  1.7,  2.8, (100 terms).
    a=0.6, d=1.1, n=100

    S100=1002(20.6+991.1)=50(1.2+108.9)=50110.1=5505.

    (iv)


    2. Find the sums below

    (i)

    (ii) 34+32+30++10
    a=34, d=2, l=10. Number of terms:

    n=10342+1=13.

    S13=132(34+10)=13244=1322=286.

    (iii) 5+(8)+(11)++(230)
    a=5, d=3, l=230 Number of terms:

    n=230(5)3+1=2253+1=76.
    S76=762(5230)=38(235)=8930.


    3. Short AP problems (solved stepwise)

    (i) a=5, d=3, an=50
    50=5+(n1)3n=16

    S16=162[25+153]=8(10+45)=855=440.

    (ii) a=7, a13=35
    7+12d=35d=73.

    S13=132(14+1273)=273.

    (iii) a12=37, d=3a=4

    S12=6(8+33)=246.

    (iv) a3=15, S10=125
    From a+2d=15 and 5(2a+9d)=125 we get d=1, a=17, a10=8

    (v) d=5, S9=75
    92(2a+40)=75a=353, a9=853.

    (vi) a=2, d=8, Sn=90
    Solve n(4n2)=90n=5, a5=34

    (vii) a=8, an=62, Sn=210.
    n2(8+62)=210n=6, d=545.

    (viii) an=4, d=2, Sn=14
    From a=62n and Sn=n(5n)=14n=7, a=8

    (ix) a=3, n=8, S=192

    192=4(6+7d)d=6.

    (x) l=28, S=144, n=9

    144=92(a+28)a=4.


    4. Which term of the AP 3,8,13,18, is 78?

    a=3, d=5. Solve 3+5(n1)=78n=16.


    5. Number of terms

    (i) 7,13,19,,205. n=20576+1=34.

    (ii) 18,  15.5,  13,,47, d=2.5n=47182.5+1=27.


    6. Is 150 a term of 11,8,5,2,?

    a=11,d=3. Solve 11+(n1)(3)=150n not integer ⇒ No.


    7. If a11=38, a16=73. Find a31.

    5d=35d=7, a=32.

    a31=32+307=178.


    8. AP of 50 terms; a3=12, a50=106. Find a29.

    From a+2d=12, a+49d=106d=2, a=8

    a29=8+282=64.


    9. a3=4, a9=8. Which term is zero?

    6d=12d=2, a=8. Solve 82(n1)=0n=5


    10. a17 exceeds a10 by 7. Find d.

    (a+16d)(a+9d)=7d=1


    11. In AP 3,15,27,39, which term is 132 more than its 54-th term?

    Here a=3, d=12. a54=639. Need ak=771k=65


    12. Two APs have same d. Difference between their 100th terms is 100. Difference between their 1000th terms?

    Difference is constant =100.


    13. How many three–digit numbers are divisible by 7?

    Smallest =105, largest =994. Count =9941057+1=128.


    14. How many multiples of 4 lie between 10 and 250?

    Smallest =12, largest =248. Count =248124+1=60.


    15. For what n do the n-th terms of 63,65,67, and 3,10,17, coincide?

    Solve 63+2(n1)=3+7(n1)n=13.


    16. ₹700 used for seven cash prizes each ₹20 less than the preceding. Find prizes.

    n=7, d=20, S7=700a=160.

    160,  140,  120,  100,  80,  60,  40 ().


    17. Class I–XII: each section of Class k plants k trees; 3 sections in each class. Total trees:

    3k=112k=312132=234.


    18. Spiral of 13 semicircles with radii 0.5,1.0,1.5, Total length (π=227).

    Semicircle length = πr. Radii sum:

    rk=132[20.5+120.5]=912.
    L=π912=227912=143 cm.


    19. 200 logs stacked: rows 20,19,18,… How many rows and top row?

    Let a=20, d=1. Solve n2(41n)=200n241n+400=0

     n=25,16. Physical solution n=16. Top row = 20(161)=5 logs.


    20. Potato race: potatoes at distances 5,8,11, (10 potatoes). Competitor runs to each and back. Total distance?

    Sum of distances =102[25+93]=185. Round trips ⇒ 2×185=370