Tag: class 12th maths Exercise 2.1 Solution

  • Exercise-2.1, Class 12th, Maths, Chapter – 2, NCERT

    EXERCISE 2.1 — Solutions

    1. Find the principal value of sin1 ⁣(12).

    Solution. Principal branch of sin1 is [π2,π2].
    sinπ6=12. π6[π2,π2].

    sin1 ⁣(12)=π6


    2. Find the principal value of cos1 ⁣(32).

    Solution. Principal branch of cos1 is [0,π].
    cosπ6=32 and π6[0,π].

    cos1 ⁣(32)=π6


    3. Find the principal value of cosec1(2).

    Solution. If y=cosec12 then cosecy=2siny=12. Principal branch for cosec1 (as used in the book) corresponds to y[π2,π2] excluding 0 (or equivalent principal branch placing the value at π/6 or ππ/6; standard choice giving principal value in [π2,π2]{0}yields y=π6. So

    cosec1(2)=π6

    (Interpretation note: many texts give cosec12=ππ6=5π6 if using a different branch — but the book’s principal branch choice yields π/6.)


    4. Find the principal value of tan1(3).

    Solution. tanπ3=3. Principal branch of tan1 is (π2,π2), and π3(π2,π2).

    tan1(3)=π3


    5. Find the principal value of cos1 ⁣(12).

    Solution. cos2π3=12, and 2π3[0,π]. So

    cos1 ⁣(12)=2π3


    6. Find the principal value of tan1(1).

    Solution. tan(π4)=1. Principal branch is (π2,π2).

    tan1(1)=π4


    7. Find the principal value of sec1 ⁣(23).

    Solution. secθ=23cosθ=32θ=π6 (principal sec1 branch is [0,π]{π2}).

    sec1 ⁣(23)=π6


    8. Find the principal value of cot1(3).

    Solution. cotθ=3tanθ=13θ=π6. Principal branch of cot1 in the book is (0,π), and π6(0,π).

    cot1(3)=π6


    9. Find the principal value of cos1 ⁣(12).

    (This repeats Q5 — same answer.)

    Solution. As in Q5,

    2π3


    10. Find the principal value of cosec1(2).

    Solution. cosecy=2siny=12. Principal value of sin1 is [π2,π2], and sin(π6)=12. So choose y=π6 in the principal branch for cosec1.

    cosec1(2)=π6


    11. Evaluate tan1(1)+cos1 ⁣(12)+sin1 ⁣(12)

    Solution.
    tan1(1)=π4
    cos1 ⁣(12)=π3
    sin1 ⁣(12)=π6
    Sum: π4+π3+π6=3π+4π+2π12=9π12=3π4

    3π4


    12. Evaluate cos1 ⁣(12)+2sin1 ⁣(12).

    Solution. cos1 ⁣(12)=π3, sin1 ⁣(12)=π6.
    So π3+2π6=π3+π3=2π3

    2π3


    13. If sin1x=y, then which is correct?

    Options:
    (A) 0yπ
    (B) π2yπ2
    (C) 0<y<π
    (D) π2<y<π2

    Solution. By the principal branch definition, sin1x takes values in [π2,π2].

    Correct: (B) π2yπ2.

    − −

    14. We evaluate

    tan1(3)    sec1(2).

    Step 1 — principal values:

    • tan1(3)=π3 (principal value of tan1 is (π2,π2), and tanπ3=3).

    • sec1(2): solve secθ=2cosθ=12. The principal value of sec1 is taken in [0,π]{π2}. In that interval the solution is θ=2π3 (since cos2π3=12). So sec1(2)=2π3

    Step 2 — subtract:

    π32π3=π3.

    So the value equals π3. (Option B.)