Tag: Class 12th Maths Exercise 5.4 Solutions

  • Exercise-5.4, Class 12th, Maths, Chapter 5, NCERT

    Differentiate the following w.r.t. x:

    Question 1

    Differentiate:

    y=exsinxSolution

    This is a quotient, so use the Quotient Rule:

    ddx(uv)=vuuvv2

    Let:

    u=ex,v=sinx

    Then:

    u=ex,v=cosx

    Apply the rule:

    dydx=sinxexexcosx(sinx)2

    Factor out ex:

    dydx=ex(sinxcosx)sin2xFinal Answer

    dydx=ex(sinxcosx)sin2x


    Question 2

    Differentiate w.r.t. x:

    y=esin1xSolution

    Let:

    y=esin1x

    Use the chain rule:

    dydx=esin1xddx(sin1x)

    We know:

    ddx(sin1x)=11x2

    Therefore:

    dydx=esin1x11x2Final Answer

    dydx=esin1x1x2


    Question 3

    Differentiate:

    y=ex3Solution

    Use the chain rule:

    Let:

    y=eu,u=x3

    Then:

    dydu=eu,dudx=3x2

    Apply chain rule:

    dydx=eu3x2

    Substitute u=x3:

    dydx=3x2ex3Final Answer

    dydx=3x2ex3


    Question 4

    Differentiate with respect to x:

    y=sin(tan1(ex))Solution

    Let:

    u=tan1(ex)

    So:

    y=sin(u)

    Step 1: Differentiate outer function

    dydu=cosu

    Step 2: Differentiate inner function

    u=tan1(ex)

    Derivative of tan1t is 11+t2t

    So,

    dudx=11+(ex)2ddx(ex)

    dudx=11+e2x(ex)

    Step 3: Apply chain rule

    dydx=cos(u)dudx

    dydx=cos(tan1(ex))(ex1+e2x)

    We know the identity:

    cos(tan1t)=11+t2

    So:

    cos(tan1(ex))=11+e2x

    Final Simplified Answer

    dydx=ex(1+e2x)3/2Final Answer

    dydx=ex(1+e2x)3/2


    Question 5

    Differentiate w.r.t. x:

    y=log(cos(ex))Solution

    Use the chain rule multiple times.

    Let:

    y=log(cos(ex))

    Step 1: Differentiate outer logarithm

    dydx=1cos(ex)ddx(cos(ex))

    Step 2: Differentiate cos(ex)

    ddx(cos(ex))=sin(ex)ddx(ex)
    =sin(ex)ex

    Combine the results

    dydx=1cos(ex)(exsin(ex))
    dydx=exsin(ex)cos(ex)Final Answer

    dydx=extan(ex)


    Question 6

    Differentiate w.r.t. x:

    y=ex+ex2+ex3+ex4+ex5

    Solution

    Differentiate term-by-term:

        1. ddx(ex)=ex

       2. ddx(ex2)=ex2ddx(x2)=ex22x

       3. ddx(ex3)=ex3ddx(x3)=ex33x2

       4. ddx(ex4)=ex4ddx(x4)=ex44x3

       5. ddx(ex5)=ex5ddx(x5)=ex55x4

    Final Answer

    dydx=ex+2xex2+3x2ex3+4x3ex4+5x4ex5


    Question 7

    Differentiate w.r.t. x:

    y=ex,x>0Solution

    Rewrite the function:

    y=(ex)1/2=e12x

    Let:u=12x=12x1/2

    So:

    y=eu

    Differentiate

    dydu=eu
    dudx=1212x1/2=14x

    Apply chain rule:

    dydx=eududx

    dydx=e12x14xFinal Answer

    dydx=e12x4x,x>0


    Question 8

    Differentiate w.r.t. x:

    y=log(logx),x>1Solution

    This is a composition of two logarithmic functions, so apply the chain rule.

    Let:

    u=logx
    y=logu

    Differentiate step-by-step

    dydu=1u
    dudx=1x

    Apply chain rule

    dydx=dydududx
    dydx=1logx1xFinal Answer

    dydx=1xlogx,x>1


    Question 9

    Differentiate w.r.t. x:

    y=cosxlogx,x>0Solution

    This is a quotient, so apply the Quotient Rule:

    ddx(uv)=vuuvv2Let:

    u=cosx,v=logxThen:

    u=sinx

    v=1x

    Apply quotient rule

    dydx=(logx)(sinx)(cosx)(1x)(logx)2
    dydx=sinxlogxcosxx(logx)2Final Answer

    dydx=sinxlogxcosxx(logx)2,x>0


    Question 10

    Differentiate w.r.t. x:

    y=cos(logx+ex),x>0Solution

    Use the chain rule.

    Let:

    u=logx+exSo:

    y=cos(u)

    Differentiate outer function

    dydu=sin(u)

    Differentiate inner function

    dudx=ddx(logx)+ddx(ex)=1x+ex

    Apply chain rule

    dydx=sin(u)(1x+ex)

    Substitute back u=logx+ex:

    Final Answer

    dydx=sin(logx+ex)(1x+ex),x>0