Tag: Exercise 11.1 Chapter 11 Surface Area Class 9th Maths NCERT Solutions

  • Exercise-11.1, Class 9th, Maths, Exercise 11, NCERT

    Useful formula used: Curved surface area (CSA) of a cone =πrl, total surface area =πr(l+r)
    (Where r = radius of base, l = slant height.)


    Q1

    Diameter of base = 10.5 cm, slant height l=10 cm.
    Radius r=10.5/2=5.25

    CSA=πrl=227×5.25×10=22×52.57=165 cm2

    Answer: 165 cm2


    Q2

    Slant height l=21 m, diameter =24 mr=12 m.
    Total surface area =πr(l+r)

    TSA=227×12×(21+12)=227×12×33=87127 m21244.57 m2

    Answer: 87127 m21244.57 m2


    Q3

    CSA =308 cm2,  l=14.
    (i) Find r from πrl=308

    r=308πl=308(22/7)×14=308308/7=7 cm.

    (ii) Total surface area =πr(l+r)=227×7×(14+7)=22×21=462 cm2

    Answer: (i) r=7. (ii) TSA =462 cm2


    Q4

    Tent: height h=10 m, base radius r=24 m.

    (i) Slant height l=r2+h2=242+102=576+100=676=26

    (ii) CSA =πrl=227×24×26

    Cost of canvas @ ₹70 per m2:

    CSA=227×24×26=137287 m2,

    Cost=CSA×70=137287×70=13728×10=137,280

    Answers: (i) l=26. (ii) Cost =137,280


    Q5

    Tarpaulin width = 3 m. Cone: height h=8 m, radius r=6 m.
    (Use π=3.14) Add 20 cm = 0.20 m extra length for stitching/wastage.

    Slant height l=62+82=36+64=100=10

    CSA =πrl=3.14×6×10=188.4 m2

    Length of tarpaulin required =CSAwidth=188.43=62.8 m

    Add 0.20 m wastage ⇒ required length =62.8+0.20=63.0 m

    Answer: 63.0 m of tarpaulin (3 m wide).


    Q6

    Slant height l=25 m, base diameter =14 ⇒ r=7.
    CSA =πrl=227×7×25=22×25=550 m2

    White-washing cost @ ₹210 per 100 m2:

    Cost=210100×550=2.1×550=1155.

    Answer: Cost =1,155


    Q7

    Joker’s cap: right circular cone, r=7 cm, h=24 cm.
    Slant height l=72+242=49+576=625=25

    Area of sheet for one cap = CSA = πrl=227×7×25=22×25=550 cm2

    For 10 caps: 10×550=5500 cm2

    Answer: 5500 cm2 of sheet for 10 caps.


    Q8

    50 hollow cones, outer paint required on outer curved surface.
    Base diameter =40 cm ⇒ r=20 cm, height h=1
    =100 cm. Use π=3.14 and 1.04=1.02 (given).

    Slant height:

    l=r2+h2=202+1002=400+10000=10400.

    Compute with the approximation: 10400=10104=10×(101.04)=1001.04
    Given 1.041.02100×1.02=102 cm

    CSA per cone =πrl=3.14×20×102=3.14×2040=6405.6 cm2

    Convert to m2: 6405.6 cm2=0.64056 m2

    Total area for 50 cones =50×0.64056=32.028 m2

    Painting cost @ ₹12 per m2:

    Cost=32.028×12=384.336384.34

    Answer: Approx ₹384.34 to paint the outer sides of all 50 cones.