Tag: Exercise 11.2 Chapter 11 Volume and Surface Area Class 9th Maths NCERT Solutions

  • Exercise-11.3, Class 9th, Maths, Chapter 11, NCERT

    Q1. Find the volume of the right circular cone with

    (i) radius 6 cm, height 7 cm
    (ii) radius 3.5 cm, height 12 cm

    Volume formula: V=13πr2h

    (i) V=13π(62)(7)=13π367=84π
    Using π=227: 84π=84×227=264 cm3

    (ii) r2=3.52=12.25
    V=13π(12.25)(12)=49π
    With π=227: 49π=49×227=154 cm3

    Answers Q1: (i) 264 cm3(ii) 154 cm3


    Q2. Capacity in litres of a conical vessel with

    (i) radius 7 cm, slant height 25 cm
    (ii) height 12 cm, slant height 13 cm

    First find height h where needed using l2=r2+h2

    Convert cm³ → litres: 1 L=1000 cm3

    (i) l2r2=62549=576h=24cm.
    V=13π(72)(24)=392π. With π=227: V=1232 cm3=1.232 L

    (ii) r=l2h2=169144=5 cm.
    V=13π(52)(12)=100π. With π=227: V=22007 cm3314.29 cm3 =0.3143 L

    Answers Q2: (i) 1.232 L. (ii) 22007 cm30.3143 L.


    Q3. Height of cone =15 cm. If volume =1570 cm3, find radius. (Use π=3.14.)

    Volume formula: V=13πr2h. Solve for r2=3Vπh

    r2=3×15703.14×15=471047.1=100r=10 cm

    Answer Q3: r=10 cm.


    Q4. If volume of a cone of height 9 cm is 48π cm3, find the diameter of base.

    V=13πr2h=13πr29=3πr2. So 3πr2=48πr2=16r=4
    Diameter =8 cm.

    Answer Q4: Diameter =8 cm


    Q5. A conical pit of top diameter 3.5 m is 12 m deep. Capacity in kilolitres?

    Radius r=1.75, height h=12
    V=13πr2h=13π(1.752)(12)=π12.25 m3.

    Using π=227: V=12.25×227=38.5 m3

    1 m3=1 kilolitre, so capacity =38.5 kL

    Answer Q5: 38.5 kilolitres


    Q6. Volume of cone =9856 cm3. Diameter of base =28 cm. Find

    (i) height, (ii) slant height, (iii) curved surface area.

    Base radius r=14 cm. Use V=13πr2hh=3Vπr2

    With π=227: πr2=227×196=616
    h=3×9856616=29568616=48 cm

    Slant height l=r2+h2=142+482=196+2304=2500=50 cm

    Curved surface area =πrl=227×14×50=2200 cm2

    Answers Q6: (i) 48 cm. (ii) 50 cm. (iii) 2200 cm2


    Q7. Right triangle with sides 5,12,13 revolved about side 12 cm. Volume of solid?

    Revolving about side 12 (a leg) generates a cone of radius 5 and height 12.

    V=13π(52)(12)=100π=22007 cm3314.29 cm3

    Answer Q7: 100π cm3  (314.29 cm3)


    Q8. Same triangle revolved about side 5 cm. Find volume and ratio of volumes (Q7 : Q8).

    Revolving about side 5 gives cone with radius 12, height 5:

    V=13π(122)(5)=240π=52807 cm3754.29 cm3

    Ratio (Q7:Q8)=100π:240π=100:240=5:12

    Answers Q8: Volume =240π cm3 (754.29 cm3). Ratio =5:12.


    Q9. Heap of wheat in form of cone: diameter =10.5 m, height =3 m. Find (i) volume, (ii) area of canvas required to cover it (assume canvas covers curved surface).

    Radius r=5.25 m. Volume:

    V=13πr2h=13π(5.252)(3)=π(5.252)=π×27.5625.

    With π=227: V=27.5625×227=86.625 m3

    Slant height l=r2+h2=27.5625+9=36.5625=58546.0467 m

    Curved surface area =πrl=227×5.25×6.046692599.77 m2

    Answers Q9: Volume =86.625 m3 Canvas (curved surface) Area 99.77 m2.