Tag: Exercise 2.3 Chapter 2 Polynomials Class 9th Maths NCERT Solutions

  • Exercise-2.3, Class 9th, Maths, Chapter 2, NCERT

    1. Determine which of the following polynomials has (x+1) as a factor:

    (i) x3+x2+x+1
    Check p(1)
    p(1)=(1)3+(1)2+(1)+1=1+11+1=0
    So (x+1) is a factor.
    Factorisation: divide or compare coefficients:

    x3+x2+x+1=(x+1)(x2+1)

    (ii) x4+x3+x2+x+1
    p(1)=11+11+1=10
    So (x+1) is not a factor.

    (iii) x4+3x3+3x2+x+1
    p(1)=13+31+1=10
    So (x+1) is not a factor.

    (iv) x3x2(2+2)x+2
    p(1)=(1)3(1)2(2+2)(1)+2

    =11+(2+2)+2=220So (x+1) is not a factor.

    Answer (Q1): Only (i) has (x+1) as a factor.

    iemh102


    2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each case:

    (i) p(x)=2x3+x22x1,  g(x)=x+1.
    Root of g(x) is x=1. Evaluate p(1):
    p(1)=2(1)3+(1)22(1)1=2+1+21=0
    So x+1 is a factor. (Yes.)

    (ii) p(x)=x3+3x2+3x+1,  g(x)=x+2
    Root is x=2. Evaluate p(2)=(8)+126+1=10
    So x+2 is not a factor. (No.)

    (iii) p(x)=x34x2+x+6,  g(x)=x3
    Root is x=3. Evaluate p(3)=2736+3+6=0
    So x3 is a factor. (Yes.)


    3. Find the value of k if x1 is a factor of p(x) in each case (so set p(1)=0):

    (i) p(x)=x2+x+k
    p(1)=1+1+k=0k=2.

    (ii) p(x)=2x2+kx+2
    p(1)=2+k+2=0k=4

    (iii) p(x)=kx22x+1
    p(1)=k2+1=0k=1

    (iv) p(x)=kx23x+k
    p(1)=k3+k=02k3=0k=32


    4. Factorise the following quadratics:

    (i) 12x27x+1
    Find pair for 121=12 that sum to 7: 3 and 4
    Split middle term: 12x23x4x+1=3x(4x1)1(4x1)=(4x1)(3x1)

    (ii) 2x2+7x+3
    Product 23=6, sum 7: 6 and 1.
    Split: 2x2+6x+x+3=2x(x+3)+1(x+3)=(2x+1)(x+3)

    (iii) 6x2+5x6
    Product 6(6)=36, sum 5: 9 and 4.
    Split: 6x2+9x4x6=3x(2x+3)2(2x+3)=(2x+3)(3x2)

    (iv) 3x2x4
    Product 3(4)=12, sum 1: 4 and 3.
    Split: 3x24x+3x4=x(3x4)+1(3x4)=(3x4)(x+1)


    5. Factorise the following cubics / polynomials:

    (i) x32x2x+2
    Group: x2(x2)1(x2)=(x2)(x21)=(x2)(x1)(x+1)

    (ii) x33x29x5
    Try rational roots ±1,±5. p(5)=12575455=0 so x=5 is a root.
    Divide by (x5) → quotient x2+2x+1=(x+1)2
    So factorisation: (x5)(x+1)2

    (iii) x3+13x2+32x+20
    Test x=1: 1+1332+20=0 → factor (x+1). Divide gives x2+12x+20
    Quadratic factors: x2+12x+20=(x+10)(x+2)
    So overall: (x+1)(x+10)(x+2)

    (iv) 2y3+y22y1
    Group: y2(2y+1)1(2y+1)=(2y+1)(y21)=(2y+1)(y1)(y+1)