Tag: Exercise 7.2 Chapter 7 Maths Class 9th Triangles Solutions NCERT

  • Exercise-7.2, Class 9th, Maths, Chapter 7, NCERT

    Q1.

    In an isosceles triangle ABC where AB=AC, the bisectors of angles B and C meet at O. Join A to O.
    Prove that:
    (i) OB=OC
    (ii) AO bisects A

    Solution:

    Given: AB=AC and OB,OC are angle bisectors of B and C.
    To prove: (i) OB=OC, (ii) AO bisects A.

    Proof:

    • In ABC, since AB=AC, we have B=C

    • OBC=12B and OCB=12C.
      OBC=OCB because B=C.

    • Hence, in OBC, two angles are equal, so the sides opposite to them are also equal.
      OB=OC

    Now, in triangles OAB and OAC:

    • OB=OC (proved)

    • AB=AC (given)

    • AO is common.

    Therefore, OABOAC by SSS.
    BAO=CAO
    Thus, AO bisects A


    Q2.

    In ABC, AD is the perpendicular bisector of BC.
    Prove that ABC is isosceles, i.e. AB=AC

    Solution:

    Given: ADBC and BD=DC
    To prove: AB=AC

    Proof:
    In ABD and ACD:

    • BD=DC (given)

    • ADB=ADC=90 (perpendicular)

    • AD is common.

    So, by RHS congruence (Right angle–Hypotenuse–Side),
    ABDACD
    Hence, AB=AC


    Q3.

    In an isosceles triangle ABC, AB=AC.
    Altitudes BE and CF are drawn from B and C to the opposite equal sides AC and AB.
    Prove that BE=CF.

    Solution:

    Given: AB=AC, BEAC, and CFAB.
    To prove: BE=CF

    Proof:
    In ABE and AFC:

    • AB=AC (given)

    • AEB=AFC=90

    • BAE=CAF (common angle at A).

    By A–A–S congruence,
    ABEAFC
    Hence, BE=CF


    Q4.

    In ABC, BE and CF are equal altitudes from B and C respectively on sides AC and AB.
    Prove that:
    (i) ABEACF
    (ii) AB=AC

    Solution:

    Given: BE=CF BEAC CFAB
    To prove: (i) ABEACF (ii) AB=AC

    Proof:
    In ABE and ACF:

    • BE=CF (given)

    • AEB=AFC=90

    • BAE=CAF (common).

    So, by A–A–S,
    ABEACF
    Hence, AB=AC
    Thus, ABC is isosceles.


    Q5.

    ABC and DBC are two isosceles triangles on the same base BC
    Prove that ABD=ACD

    Solution:

    Given: AB=AC and DB=DC
    To prove: ABD=ACD

    Proof:
    Join AD
    In ABD and ACD:

    • AB=AC (given)

    • BD=CD (given)

    • AD=AD (common).

    So, ABDACD by SSS congruence.
    Hence, ABD=ACD


    Q6.

    ABC is isosceles with AB=AC. Side BA is produced to D such that AD=AB
    Prove that BCD=90

    Solution:

    Given: AB=AC, AD=AB
    To prove: BCD=90

    Proof:
    Since AB=AC
    ABC=ACB
    Also, since AD=AB
    ACD is isosceles ⇒ ADC=ACD

    Now, in the straight line AD,
    ADC+ADB=180
    But ADB is external to ABC, so
    ADB=ABC+ACB=2ACB
    Hence,

    ADC=1802ACB

    But in ACD,

    ADC+2ACD=180.

    Substituting ADC=1802ACB, we get

    1802ACB+2ACD=180

    ACD=ACB=45
    Therefore, in BCD

    BCD=180(ACB+ACD)=180(45+45)=90

    ✅ Hence, BCD=90