Tag: Exercise 8.1 Chapter 8 Class 10th Maths NCERT Solution

  • Exercise 8.1, Class 10th, Maths, Chapter 8, NCERT

    1. In △ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine :

    (i) sin A, cos A
    (ii) sin C, cos C

    Answer 1.
    AC (hypotenuse) = √(AB² + BC²) = √(24² + 7²) = √(576 + 49) = √625 = 25.

    (i) For angle A: opposite = BC = 7, adjacent = AB = 24, hypotenuse = 25.
    sinA=725,cosA=2425.

    (ii) For angle C: opposite = AB = 24, adjacent = BC = 7, hypotenuse = 25.
    sinC=2425,cosC=725


    2. In Fig. 8.13, find tanPcotR.

    Answer 2.
     If Fig. 8.13 is the standard right triangle with PQ = 4, QR = 3, PR = 5 (a common 3–4–5 right triangle), then
    tanP=QRPQ=34 and cotR=QRPQ=34, so tanPcotR=0


    3. If sinA=34, calculate cosA and tanA.

    Answer 3.
    cosA=1sin2A=1916=716=74


    tanA=sinAcosA=3/47/4=37=377


    4. Given 15cotA=8, find sinA and secA.

    Answer 4.
    cotA=815. Then csc2A=1+cot2A=1+64225=289225, so cscA=1715(positive for acute angle).
    Thus sinA=1cscA=1517

    Also cosA=cotAsinA=8151517=817, so secA=1cosA=178


    5. Given secθ=1312, calculate all other trigonometric ratios.

    Answer 5.
    cosθ=1213.

    sinθ=1cos2θ=1144169=25169=513

    tanθ=sinθcosθ=5/1312/13=512.

    Reciprocals: cscθ=135,cotθ=125.


    6. If ∠A and ∠B are acute angles such that cosA=cosB, then show that ∠A = ∠B.

    Answer 6.
    On [0,90] the cosine function is strictly decreasing and therefore one-to-one. Hence cosA=cosB(with A and B acute) implies A=B.
    (Equivalently: construct right triangles with same cosine value; corresponding sides/hypotenuse ratios match, triangles are similar and the acute angles equal.)


    7. If cotθ=78, evaluate:

    (i) 1+sinθ1sinθ and 1+cosθ1cosθ

    (ii) cot2θ.

    Answer 7.
    Given cotθ=78. Let sinθ=s, cosθ=c. From cot=cs=78 we get (as usual) s=8113, c=7113 (since s2+c2=1 gives factor 113).

    (i)

    1+sinθ1sinθ=1+811318113=113+81138.
    1+cosθ1cosθ=1+711317113=113+71137.

    (You can rationalize these if you prefer a form without roots in denominators.)

    (ii) cot2θ=(78)2=4964.


    8. If 3cotA=4, check whether 1tan2A1+tan2A=cos2Asin2A

    Answer 8.
    From 3cotA=4 we get cotA=43 so tanA=34. Compute LHS:

    1tan2A1+tan2A=1(3/4)21+(3/4)2=19/161+9/16=7/1625/16=725.

    RHS: cos2Asin2A=cos2A. Using triangle with legs 3 and 4 (hypotenuse 5): sinA=35, cosA=45 Then cos2Asin2A=1625925=725

    So both sides equal 725. The equality holds (this is a standard identity: cos2A=1tan2A1+tan2A


    9. In triangle ABC, right-angled at B, if tanA=13 find the value of:

    (i) sinAcosC+cosAsinC
    (ii) cosAcosCsinAsinC

    Answer 9.
    In a right triangle with right angle at B, A+C=90

    (i) sinAcosC+cosAsinC=sin(A+C)=sin90=1.

    (ii) cosAcosCsinAsinC=cos(A+C)=cos90=0


    10. In △PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine sin P, cos P and tan P.

    Answer 10.
    Let QR=x. Then PR=25x. Right triangle gives PQ2+QR2=PR2
    52+x2=(25x)2=62550x+x2. Cancel x2: 25=62550x ⇒ 50x=600 ⇒ x=12.

    So QR=12, PR=13. For angle P: opposite = QR = 12, adjacent = PQ = 5, hypotenuse = PR = 13.

    sinP=1213,cosP=513,tanP=125.


    11. State whether the following are true or false. Justify your answer.

    (i) The value of tanA is always less than 1.
    (ii) secA=125 for some value of angle A.
    (iii) cosA is the abbreviation used for the cosecant of angle A.
    (iv) cotA is the product of cot and A.
    (v) sinθ=43 for some angle θ.

    Answer 11.
    (i) False. tanA can be greater than 1 (e.g. A=60gives tan60=3>1.
    (ii) True. secA=125 means cosA=512, which is a valid cosine value for some acute angle (so such an angle exists).
    (iii) False. cosA denotes cosine of A. Cosecant is written cscA
    (iv) False. cotA means cotangent of A, not the product “cot × A.”
    (v) False. For real angles sinθ1.

     43>1, so sinθ=43 is impossible for a real angle.