Tag: Miscellaneous Exercise on Chapter 5 class 12th maths NCERT

  • Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT(1-10)

    Question 1

    Differentiate w.r.t. x:

    y=(3x29x+5)9

    Solution

    Using the chain rule, differentiate the outer function first and then multiply by the derivative of the inner function:

    dydx=9(3x29x+5)8×ddx(3x29x+5)

    Now differentiate the bracket:

    ddx(3x29x+5)=6x9

    So,dydx=9(3x29x+5)8(6x9)

    dydx=27(2x3)(3x29x+5)8


    Question 2

    Differentiate w.r.t. x:

    y=sin3x+cos6x

    Solution

    Differentiate each term separately. Using the chain rule:

    ddx(sin3x)=3sin2xddx(sinx)=3sin2xcosx
    ddx(cos6x)=6cos5xddx(cosx)=6cos5x(sinx)

    So,dydx=3sin2xcosx6cos5xsinx

    Now factor common terms: 3sinxcosx

    dydx=3sinxcosx(sinx2cos4x)


    Question 3

    Differentiate w.r.t. x:

    y=(5x)3cos2x

    Solution

    Take log on both sides:

    lny=3cos2xln(5x)

    Differentiate w.r.t. x (using product rule):

    1ydydx=3ln(5x)ddx(cos2x)+3cos2xddx(ln(5x))

    =3ln(5x)(2sin2x)+3cos2x1x

    =6ln(5x)sin2x+3cos2xx

    Multiply both sides by y:

    dydx=(5x)3cos2x(3cos2xx6ln(5x)sin2x)


    Question 4

    Differentiate w.r.t. x:

    y=sin1(xx),0x1

    Solution

    First rewrite the function inside:

    xx=x3/2

    y=sin1(x3/2)

    Now differentiate:

    dydx=11(x3/2)2ddx(x3/2)

    ddx(x3/2)=32x1/2

    So,dydx=32x1/21x3

    dydx=3x21x3,0x1


     

    Question 5y=cos1(x2)2x+7,2<x<2Answer :

    To Find: dydx

    Let:y=cos1(x2)(2x+7)1/2

    Use Product Rule:

    dydx=dudxv+udvdx

    Where:u=cos1(x2),v=(2x+7)1/2

    Step 1: Differentiate u=cos1(x/2)

    dudx=11(x2)2ddx(x2)
    dudx=11x2412
    dudx=121x24

    Now,

    1x24=4x22

    So,

    dudx=124x22=14x2

    Step 2: Differentiate v=(2x+7)1/2

    dvdx=12(2x+7)3/22
    dvdx=(2x+7)3/2

    Apply Product Rule

    dydx=(14x2)(2x+7)1/2+(cos1(x2))((2x+7)3/2)
    dydx=14x22x+7cos1(x/2)(2x+7)3/2


    Question 6

    y=cot1(1+sinx+1sinx1+sinx1sinx),0<x<π2

    Solution

    Let

    A=1+sinx,B=1sinx

    So the expression inside cot1 becomes:

    A+BAB

    Simplify the expression

    Multiply numerator and denominator by (A+B):

    A+BABA+BA+B=(A+B)2A2B2Expand numerator:

    (A+B)2=A2+2AB+B2And denominator:

    A2B2=(1+sinx)(1sinx)=2sinx

    Now calculate numerator:

    A2+B2=(1+sinx)+(1sinx)=2
    AB=(1+sinx)(1sinx)=1sin2x=cosx

    So:(A+B)2=2+2cosx

    Thus:A+BAB=2+2cosx2sinx=1+cosxsinx

    Use Trigonometric Identity

    1+cosxsinx=cotx2

    So:y=cot1(cotx2)

    Given domain 0<x<π2, we have:

    0<x2<π4

    In this domain, cot1(cotθ)=θ
    Thus:y=x2

    Differentiate

    dydx=12


    Question 7

    y=(logx)logx,x>1

    We need to find:

    dydxSolution

    Take logarithm on both sides

    y=(logx)logx
    lny=logxln(logx)

    Differentiate both sides w.r.t. x

    Use implicit differentiation:

    Left side:

    1ydydx

    Right side — Product rule:

    ddx[logxln(logx)]

    Let u=logx and v=ln(logx)

    u=1x,v=1logx1x

    Apply product rule:

    ddx[uv]=uv+uv
    =1xln(logx)+logx1xlogx

    =ln(logx)x+1x

    Equate both sides

    1ydydx=ln(logx)x+1x

    Multiply both sides by y:

    dydx=y(ln(logx)x+1x)

    Substitute y=(logx)logx

    dydx=(logx)logx(ln(logx)x+1x)

    Final Answer

    dydx=(logx)logx(ln(logx)x+1x)


    Question 8

    y=cos(acosx+bsinx)

    where a and b are constants.

    We have to find:

    dydxSolution

    Let:

    u=acosx+bsinx

    So the function becomes:

    y=cosu

    Differentiate using Chain Rule

    dydx=sinududx

    Now differentiate u:

    dudx=addx(cosx)+bddx(sinx)

    dudx=a(sinx)+b(cosx)

    dudx=asinx+bcosx

    Substitute back into derivative

    dydx=sin(acosx+bsinx)(asinx+bcosx)

    Final Answer

    dydx=sin(acosx+bsinx)(asinxbcosx)


    Question 9

    y=(sinxcosx)(sinxcosx),π4<x<3π4

    We must find:

    dydx

    Solution

    Let:

    y=(sinxcosx)(sinxcosx)

    Take natural log on both sides (logarithmic differentiation):

    lny=(sinxcosx)ln(sinxcosx)

    Differentiate both sides w.r.t x:

    Left side:

    1ydydx

    Right side (product rule):

    Let u=sinxcosx and v=ln(sinxcosx)

    u=cosx+sinx
    v=1sinxcosx(cosx+sinx)

    Apply product rule:

    ddx[uv]=uv+uv

    =(cosx+sinx)ln(sinxcosx)+(sinxcosx)cosx+sinxsinxcosx

    Simplify the second term:

    =(cosx+sinx)ln(sinxcosx)+(cosx+sinx)

    Factor out (cosx+sinx)

    =(cosx+sinx)[ln(sinxcosx)+1]

    Now equate both sides

    1ydydx=(cosx+sinx)[ln(sinxcosx)+1]

    Multiply both sides by y:

    dydx=y(cosx+sinx)[ln(sinxcosx)+1]

    Substitute y=(sinxcosx)(sinxcosx)

    dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]

    Final Answer

    dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[ln(sinxcosx)+1]


    Question 10

    y=xx+xa+ax+aa,a>0,  x>0

    We need to find:

    dydx

    Differentiate term by term

    1. xx

    Use logarithmic differentiation:

    ddx(xx)=xx(lnx+1)

           2. xa

    Here a is constant:

    ddx(xa)=axa1

            3. ax

    Exponential with constant base:

    ddx(ax)=axlna

            4. aa

    Constant term:

    ddx(aa)=0

    Combine all results

    dydx=xx(lnx+1)+axa1+axlna+0

    Final Answer

    dydx=xx(lnx+1)+axa1+axlna