Tag: NCERT CBSE Class 12th Maths Solutions

  • Exercise-4.3, Class 12th, Maths, Chapter 4, NCERT

    1. Write minors and cofactors of the elements of the following determinants:

    (i) Δ=2403

    For a 2×2 determinant the minor Mij of element aij is the determinant left after deleting its row and column; for 2×2 deleting a row & column leaves a 1×1 number.

    Elements and their minors:

    • a11=2:  M11=3. Cofactor A11=(1)1+1M11=+3

    • a12=4:  M12=0. Cofactor A12=(1)1+2M12=0=0

    • a21=0:  M21=4. Cofactor A21=(1)2+1M21=4

    • a22=3:  M22=2. Cofactor A22=(1)2+2M22=+2

    (You can check: expansion along first row gives Δ=2A11+4A12=23+40=6, and direct determinant 2340=6)


    (ii) Δ=acbd

    Minors (each 1×1 entry):

    • M11=d,  A11=+d

    • M12=b,  A12=(1)1+2b=b

    • M21=c,  A21=(1)2+1c=c

    • M22=a,  A22=+a

    (So cofactors matrix is (dbca))


    2. Write minors and cofactors for the following 3×3 determinants:

    (i) I3=100010001

    We give minors Mij and cofactors Aij=(1)i+jMij

    Because I3 is diagonal, minors are determinants of the 2×2submatrices:

    Row 1:

    • M11=1001=1,  A11=+1

    • M12=0001=0,  A12=0=0

    • M13=0100=0,  A13=+0=0

    Row 2:

    • M21=0001=0,  A21=0=0

    • M22=1001=1,  A22=+1

    • M23=1000=0,  A23=0=0

    Row 3:

    • M31=0010=0,  A31=+0=0

    • M32=1000=0,  A32=0=0

    • M33=1001=1,  A33=+1

    (So adj I3 = transpose of cofactor matrix = identity again.)


    (ii) Δ=104351012

    Compute minors (each is a 2×2 determinant) and cofactors:

    Row 1:

    • M11=5112=5211=101=9,  A11=+9

    • M12=3102=3210=6,  A12=(1)1+26=6

    • M13=3501=3150=3,  A13=+3

    Row 2:

    • M21=0412=0241=4,  A21=(1)2+1(4)=+4

    • M22=1402=1240=2,  A22=+2

    • M23=1001=1100=1,  A23=(1)2+31=1

    Row 3:

    • M31=0451=0145=20,  A31=(1)3+1(20)=20
      (note sign: (1)4=+1, so A31=+(20)=20

    • M32=1431=1143=112=11,  A32=(1)3+2(11)=+11

    • M33=1035=1503=5,  A33=(1)3+35=+5

    (You can verify determinant by expansion: Δ=1A11+0A12+4A13=19+0+43=9+12=21

    Direct check yields same.)


    3. Using cofactors of elements of the second row, evaluate

    Δ=538201123

    We will expand along the second row: Δ=a21A21+a22A22+a23A23

    Compute the cofactors (minors first):

    • For a21=2: M21=3823=3382=916=7
      A21=(1)2+1M21=(7)=+7

    • For a22=0: M22=5813=5381=158=7
      A22=(1)2+2M22=+7

    • For a23=1: M23=5312=5231=103=7
      A23=(1)2+3M23=7

    Now expansion:

    Δ=2A21+0A22+1A23=27+0+1(7)=147=7

    (You may check by any other expansion; result is 7.)


    4. Using cofactors of elements of the third column, evaluate

    Δ=111xyzyzx

    We expand along third column: Δ=a13A13+a23A23+a33A33
    where a13=1,  a23=z,  a33=x

    Compute minors and cofactors:

    • A13=(1)1+3M13=(1)4M13=+M13
      M13=xyyz=xzy2

    • A23=(1)2+3M23=(1)5(M23)=M23 (Simpler: A23=M23)
      M23=11yz=1z1y=zy
      So A23=(zy)=yz

    • A33=(1)3+3M33=+M33
      M33=11xy=1y1x=yx
      So A33=yx

    Now expand:

    Δ=1(xzy2)+z(yz)+x(yx)

    Simplify term-by-term:

    Δ=xzy2+zyz2+xyx2.

    Group like terms:

    Δ=x2+(xz+zy+xy)(y2+z2)

    We can rewrite symmetric grouping if desired. But we can also notice a factorization — rearrange as

    Δ=(x2+y2+z2)+(xy+yz+zx).

    Thus

    Δ=(xy+yz+zx)(x2+y2+z2)

    (That is the simplest closed form. You may also write Δ=12[(xy)2+(yz)2+(zx)2] — indeed expanding that gives the same value. So Δ0 and equals zero exactly when x=y=z.)


    5. If Δ=[aij] is the 3×3 determinant and Aij are cofactors of aij, then which of the following equals Δ?

    Options:

    • (A) a11A31+a12A32+a13A33

    • (B) a11A11+a12A21+a13A31

    • (C) a21A11+a22A12+a23A13

    • (D) a11A11+a21A21+a31A31

    Solution / reasoning.

    Standard properties of cofactors / expansions:

    • Determinant expansion along the first row gives
      Δ=a11A11+a12A12+a13A13

    • Expansion along the first column gives
      Δ=a11A11+a21A21+a31A31

    Option (D) exactly matches the expansion along the first column, so it equals Δ.
    Options (A), (B), (C) are mixed-index combinations that do not in general equal Δ (they give either other identities or zero). For example, the sum of elements of one row multiplied by cofactors of a different row equals 0.

    Therefore the correct choice is

    (D)  a11A11+a21A21+a31A31

  • Exercise-4.2, Class 12th, Maths, Chapter 4, NCERT

    Question 1 (Area of triangles)

    Find area of the triangle whose vertices are:
    (i) (1,0),(6,0),(4,3)(ii) (2,7),(1,1),(10,8)

    (iii) (2,3),(3,2),(1,8).

    Method. Area =12x1(y2y3)+x2(y3y1)+x3(y1y2)

    (i) x1=1,y1=0;  x2=6,y2=0;  x3=4,y3=3

    S=121(03)+6(30)+4(00)

    =123+18+0=12(15)=152.

    (ii) (2,7),(1,1),(10,8)

    S=122(18)+1(87)+10(71)

    =1214+1+60=12(47)=472

    (iii) (2,3),(3,2),(1,8)

    S=122(2(8))+3((8)(3))+(1)((3)2)

    =122015+5=12(30)=15


    Question 2 (Collinearity)

    Show that A(a,b+c),  B(b,c+a),  C(c,a+b) are collinear.

    Solution. Points are collinear iff area of triangle ABC is zero. Compute

    Δ=ab+c1bc+a1ca+b1=a((c+a)(a+b))+b((a+b)(b+c))+c((b+c)(c+a))

    Simplify each bracket:

    a(cb)+b(ac)+c(ba)=acab+abbc+bcac=0

    Hence Δ=0 so A,B,C are collinear.


    Question 3 (Values of k for area = 4)

    Find k if area =4 for:
    (i) (k,0),(4,0),(0,2)(ii) (2,0),(0,4),(0,k).

    (i) Using determinant formula:

    Δ=k(02)+4(20)+0(00)=2k+8.

    Area =12Δ=4 ⁣2k+8 ⁣=8
    So 2k+8=8 or 2k+8=8 giving k=0 or k=8
    k=0 or 8

    (ii)

    Δ=2(4k)+0+  0=8+2k

    128+2k=48+2k=8. So 8+2k=8 or 8+2k=8
    gives k=8 or k=0
    k=0 or 8.


    Question 4 (Equation of a line using determinants)

    (i) line joining (1,2) and (3,6).(ii) line joining (3,1) and (9,3).

    Use determinant form for line through (x1,y1),(x2,y2)

    xy1x1y11x2y21=0.

    (i) xy1121361=0

    x(26)y(13)+1(66)=4x+2y=0y=2x.

    (ii) xy1311931=0

    x(13)y(39)+1(93)=2x+6y=0x3y=0.


    Question 5 (Find k from given area = 35)

    If area of triangle is 35 with vertices (2,6),(5,4),(k,4)

    The points (5,4) and (k,4) have same y-coordinate, so base =k5, height from (2,6) to line y=4 is 4(6)=10

    Area =12baseheight=12k510=5k5=35
    So k5=7k5=±7k=12 or k=2.

    k=12 or k=2 (So the correct choice from the options is the pair 12,2)