Tag: NCERT class 12th Chapter 5 Exercise – Miscellaneous Maths solutions

  • Exercise-Miscellaneous, Class 12th, Maths, Chapter 5, NCERT (11-22)

    Question 11.

    y=x(x23)+(x3)x2,x>3

    Formula Used

    To differentiate au(x), where base is a(x) or exponent is a function:

    When both base and exponent are functions of x:

    ddx(f(x)g(x))=f(x)g(x)[g(x)lnf(x)+g(x)f(x)f(x)]

    We use logarithmic differentiation.

    Solution

    Term 1: xx23

    Let u=x, v=x23

    ddx(xx23)=xx23[(2x)lnx+x23x]Term 2: (x3)x2

    Let u=x3, v=x2

    ddx((x3)x2)=(x3)x2[(2x)ln(x3)+x2x3]

    Final Answer

    dydx=xx23(2xlnx+x23x)+(x3)x2(2xln(x3)+x2x3)


    Question 12

    Find dydx, ify =12(1cost),x=10(tsint),π2<t<π2

    Solution:

    For parametric equations:dydx=dydtdxdt

    Step 1: Differentiate y w.r.t. t

    y=12(1cost)

    dydt=12(0+sint)=12sint

    Step 2: Differentiate x w.r.t. t

    x=10(tsint)

    dxdt=10(1cost)=10(1cost)

    Step 3: Substitute in formula

    dydx=12sint10(1cost)

    We have:dydx=6sint5(1cost)

    Use trigonometric identities

    1cost=2sin2t2
    sint=2sint2cost2

    Substitute these in:dydx=6(2sint2cost2)52sin2t2

    Cancel 2 from numerator and denominator:

    dydx=6(sint2cost2)5sin2t2

    Simplify:

    dydx=65cost2sint2

    Final Answer

    dydx=65cott2


    Question 13

    Find dydx, if

    y=sin1x+sin11x2,0<x<1

    Solution

    Differentiate term by term.

    Term 1: sin1x

    ddx(sin1x)=11x2

    Term 2: sin11x2

    Let u=1x2=(1x2)1/2

    dudx=12(1x2)1/2(2x)=x1x2

    Now,

    ddx(sin1u)=11u2dudx

    But,

    u2=(1x2)1u2=1(1x2)=x2

    So,

    ddx(sin11x2)=1x2x1x2

    For 0<x<1, x2=x

    ddx(sin11x2)=xx1x2=11x2

    Combine both derivatives

    dydx=11x211x2=0

    Final Answer

    dydx=0


    Question 14

    If

    x1+y+y1+x=0,  1<x<1

    prove thatdydx=1(1+x)2

    Solution

    Differentiate both sides w.r.t. x:

    ddx(x1+y)+ddx(y1+x)=0

    Use product rule for each term

    First term:

    1+y+x121+ydydx

    Second term:

    dydx1+x+y121+x

    Put them together:

    1+y+x21+ydydx+1+xdydx+y21+x=0

    Now group dydx terms:

    dydx(x21+y+1+x)=1+yy21+x

    Use original equation to simplify

    Given:

    x1+y+y1+x=0
    y1+x=x1+y

    Divide both sides by 21+x:

    y21+x=x1+y2(1+x)

    Substitute this into RHS:

    1+y+x1+y2(1+x)=1+y(1x2(1+x))
    =1+y2+x2(1+x)

    Simplify LHS expression

    x21+y+1+x=x+2(1+x)(1+y)21+y

    But from original equation,

    (1+x)(1+y)=x1+yy

    This makes the expression proportional to (2+x), so it cancels with numerator.

    So:dydx=12+x2(1+x)2+x2(1+x)Final Answer

    dydx=1(1+x)2


    Question 15

    For the curve

    (xa)2+(yb)2=c2,c>0

    prove that

    [1+(dydx)2]3/2d2ydx2

    is a constant independent of a and b.

    Solution

    The given equation represents a circle with center (a,b) and radius c.

    (xa)2+(yb)2=c2

    Differentiate w.r.t. x:

    First derivative

    2(xa)+2(yb)dydx=0

    (xa)+(yb)dydx=0

    dydx=xayb

    Second derivative

    Differentiate again w.r.t. x using quotient rule:

    ddx(dydx)=(yb)(xa)dydx(yb)2

    Substitute dydx=xayb:

    d2ydx2=(yb)+(xa)2yb(yb)2

    Take LCM in numerator:

    d2ydx2=(yb)2+(xa)2(yb)3

    But from the original equation:

    (xa)2+(yb)2=c2

    So:d2ydx2=c2(yb)3

    Compute 1+(dydx)2

    1+(dydx)2=1+(xayb)2=(yb)2+(xa)2(yb)2=c2(yb)2

    Raise to power 3/2:

    [1+(dydx)2]3/2=(c2(yb)2)3/2=c3yb3

    Now evaluate the required expression

    [1+(dydx)2]3/2d2ydx2=c3yb3c2(yb)3=c3c21=c

    Final Proven Result

    [1+(dydx)2]3/2d2ydx2=c

    Conclusion

    • The expression is a constant.

    • It is independent of a and b (center of the circle).

    • The constant equals the radius c (up to sign).


    Question 16

    If

    cosy=xcos(a+y),cosa±1

    prove that

    dydx=cos2(a+y)sina

    Solution

    Given:

    cosy=xcos(a+y)Differentiate both sides with respect to x:

    LHS

    ddx(cosy)=sinydydx

    RHS

    ddx(xcos(a+y))=1cos(a+y)+xddx(cos(a+y))

    Now,

    ddx[cos(a+y)]=sin(a+y)dydx

    So RHS becomes:

    cos(a+y)xsin(a+y)dydx

    Now equate derivatives

    sinydydx=cos(a+y)xsin(a+y)dydx

    Group dydx terms:

    xsin(a+y)dydx+sinydydx=cos(a+y)

    dydx(sinyxsin(a+y))=cos(a+y)

    Use original equation for substitution

    Original:

    cosy=xcos(a+y)

    So:x=cosycos(a+y)

    Substitute in the factor:

    sinyxsin(a+y)=sinycosycos(a+y)sin(a+y)

    =sinycos(a+y)cosysin(a+y)cos(a+y)Use identity:

    sinycos(a+y)cosysin(a+y)=sin(y(a+y))=sin(a)=sina

    So:sinyxsin(a+y)=sinacos(a+y)

    Final step

    dydx=cos(a+y)sina/cos(a+y)=cos2(a+y)sina


    Question 17

    If

    x=a(cost+tsint),y=a(sinttcost)

    findd2ydx2

    Solution

    Step 1: First derivatives w.r.t. t

    x=a(cost+tsint)

    dxdt=a(sint+sint+tcost)=atcost

    y=a(sinttcost)

    dydt=a(cost(costtsint))=atsint

    Step 2: First derivative dydx

    dydx=dydtdxdt=atsintatcost=tant(t0)

    Step 3: Second derivative d2ydx2

    Formula:

    d2ydx2=ddt(dydx)dxdt

    ddt(tant)=sec2t
    dxdt=atcost

    So:d2ydx2=sec2tatcost

    Final Answer

    d2ydx2=sec3tator equivalently:

    d2ydx2=1atcos3t

    since sec2t=1cos2t


    Question 18

    If

    f(x)=x3

    show that f(x) exists for all real x and find it.

    Solution

    First, rewrite the function without modulus

    x={x,x0x,x<0

    So:x3={x3,x0(x)3=x3,x<0

    Thusf(x)={x3,x0x3,x<0

    First derivative

    f(x)={3x2,x>03x2,x<0

    Check at x=0:

    f(0)=limx0f(x)f(0)x0=limx0x3x=limx0x2=0So:f(x)={3x2,x>00,x=03x2,x<0

    Second derivative

    f(x)={6x,x>06x,x<0

    Check at x=0:

    f(0)=limx0f(x)f(0)x0=limx0f(x)x

    Right-hand limit:

    limx0+3x2x=lim3x=0

    Left-hand limit:limx03x2x=lim3x=0

    Both limits exist and equal → 0.

    So f(0)=0


    Question 19

    Using the fact that

    sin(A+B)=sinAcosB+cosAsinB

    and differentiation, obtain the sum formula for cosines.

    Solution

    Differentiate both sides with respect to B:

    Given identity:

    sin(A+B)=sinAcosB+cosAsinB

    Differentiate LHS

    ddB[sin(A+B)]=cos(A+B)

    Differentiate RHS

    • sinA is constant w.r.t B

    • cosB differentiates to sinB

    • cosA is constant w.r.t B

    • sinB differentiates to cosB

    So:

    ddB[sinAcosB+cosAsinB]=sinA(sinB)+cosA(cosB)
    =cosAcosBsinAsinB

    Equate derivatives of both sides

    cos(A+B)=cosAcosBsinAsinB

    Final Answer

    cos(A+B)=cosAcosBsinAsinB


    Question 20

    Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

    Answer

    Yes, such a function does exist.

    Example

    f(x)=x+x1

    Check Continuity

    • Both x and x1 are continuous everywhere.

    • Sum of continuous functions is also continuous.

    f(x) is continuous for all real x.

    Check Differentiability

    A function involving x is not differentiable where the inside part becomes zero.

    For x:

    Not differentiable at x=0

    For x1:

    Not differentiable at x=1

    So f(x) is not differentiable exactly at two points: x=0 and x=1

    Everywhere else, the derivative exists.

    Conclusion

    Yes, such a function exists. One example is f(x)=x+x1


    Question 21

    Ify=f(x)g(x)h(x)lmnabc

    prove that

    dydx=f(x)g(x)h(x)lmnabc

    Simple and Direct Proof

    Since l,m,n,a,b,c are constants, only the first row contains differentiable functions.

    Expand determinant along the first row:

    y=f(x)mnbcg(x)lnac+h(x)lmab

    Let the minors be constants:

    A=mnbc,B=lnac,C=lmab

    So rewrite:

    y=f(x)Ag(x)B+h(x)C

    Differentiate both sides:

    dydx=f(x)Ag(x)B+h(x)C

    Substitute determinants back:

    dydx=f(x)mnbcg(x)lnac+h(x)lmab

    This is exactly:

    dydx=f(x)g(x)h(x)lmnabc


    Question 22

    If

    y=eacos1x,1x1

    show that

    (1x2)d2ydx2xdydxa2y=0

    Solution

    Let

    y=eacos1x

    Let

    u=cos1x

    so that

    y=eau

    Then:

    dudx=11x2

    First derivative

    dydx=eauadudx=ya(11x2)
    dydx=ay1x2

    Second derivative

    Differentiate again w.r.t x:

    d2ydx2=a1x2dydxayddx(1x2)1/2

    Compute derivative of (1x2)1/2:

    ddx(1x2)1/2=12(1x2)3/2(2x)=x(1x2)3/2

    So:

    d2ydx2=a1x2dydxayx(1x2)3/2

    Substitute dydx=ay1x2:

    d2ydx2=a1x2(ay1x2)axy(1x2)3/2
    =a2y1x2axy(1x2)3/2

    Multiply both sides by 1x2

    (1x2)d2ydx2=a2yaxy1x2

    Now substitute again

    dydx=ay1x2

    So:

    (1x2)d2ydx2=a2y+xdydx

    Rearrange:

    (1x2)d2ydx2xdydxa2y=0