Exercise-3.3, Class 10th, Maths, Chapter-3, NCERT

1. Solve by elimination and substitution

(i) x+y=5,2x3y=4

Elimination:

  • Multiply x+y=5 by 2: 2x+2y=10

  • Subtract 2x3y=4 from this: (2x+2y)(2x3y)=1045y=6

  • So y=65. Then x=565=195.

Substitution (quick):

  • x=5y. Put in 2x3y=4
    2(5y)3y=4105y=4y=6/5, same result.

Answer: (x,y)=(195,65)


(ii) 3x+4y=10,2x2y=2

Elimination:

  • Multiply second eqn by 2: 4x4y=4

  • Add to first: (3x+4y)+(4x4y)=10+47x=14x=2

  • Then 3(2)+4y=106+4y=10y=1

Substitution would give same.

Answer: (x,y)=(2,1)


(iii) 3x5y4=0 and 9x=2y+7.
Rewrite:

  • 3x5y=4 and 9x2y=7

Elimination:

  • Multiply first by 3: 9x15y=12

  • Subtract the second: (9x15y)(9x2y)=12713y=5y=513

  • Then 3x5(5/13)=43x+2513=43x=2713x=913

Answer: (x,y)=(913,513)


(iv) x2+2y3=1,xy3=3

First clear denominators:

  • Multiply first by 6: 3x+4y=6

  • Multiply second by 3: 3xy=9

Elimination:

  • Subtract the second from the first: (3x+4y)(3xy)=695y=15y=3.

  • Then 3x(3)=93x+3=93x=6x=2.

Answer: (x,y)=(2,3)


2. Word problems — form the pair and solve (elimination)

(i) Fraction problem.
Let fraction =xy. Conditions:

x+1y1=1x+1=y1  xy=2.xy+1=122x=y+1.

Solve: from xy=2 ⇒ x=y2

Put in 2x=y+1: 2(y2)=y+12y4=y+1y=5.

Then x=3.

Answer: The fraction is 35


(ii) Ages problem (Nuri & Sonu).
Let Nuri =N, Sonu =S

Five years ago: N5=3(S5)  N3S=10.

Ten years later: N+10=2(S+10)  N2S=10.

Subtract first from second: (N2S)(N3S)=10(10)S=20. Then N2(20)=10N=50.

Answer: Nuri =50 years, Sonu =20 years.


(iii) Two-digit number.
Let tens digit =x, units =y. Then number =10x+y
Given x+y=9.
Also 9(10x+y)=2(10y+x)
Compute: 90x+9y=20y+2x88x=11y8x=y.
Combine with x+y=9
x+8x=99x=9x=1, y=8
Number =18

Answer: 18.

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.