Exercise-11.4, Class 9th, Maths, Chapter 11, NCERT

Q1. Find the volume of a sphere whose radius is

(i) 7 cm
(ii) 0.63 m

Volume formula:   V=43πr3

(i) r=7

V=43×227×73=43×227×343=883×49=43123 cm31437.33 cm3.

(ii) r=0.63,  r3=0.633=0.250047 m3

V=43×227×0.250047=8821×0.2500471.047815 m3


Q2. Find the amount of water displaced by a solid spherical ball of diameter

(i) 28 cm r=14 cm
(ii) 0.21 m r=0.105 m

(Amount displaced = volume of the sphere.)

(i) r=14 cm.

V=43π(14)3=43×227×2744=344963 cm311498.67 cm3.

In litres: 11498.67 cm311.499 L

(ii) r=0.105 m. r3=0.1053=0.001157625 m3

V=43×227×0.0011576250.00485195 m34.85195 L.


Q3. The diameter of a metallic ball is 4.2 cm. What is the mass of the ball, if the density of the metal is 8.9 g/cm3?

Radius r=2.1 cm. Volume:

V=43π(2.1)3=8821×9.26138.808 cm3.

Mass =density×V=8.9×38.808345.51 g

Answer: 345.5 g


Q4. The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?

If linear scale factor =14, volume scales as cube ⇒ fraction =(14)3=164

Answer: 164


Q5. How many litres of milk can a hemispherical bowl of diameter 10.5 cm hold?

Radius r=5.25 cm. Volume of hemisphere = 23πr3

Compute r3=5.253=144.703125 cm3

V=23×227×144.703125=4421×144.703125303.1875 cm3.

Convert to litres: 303.1875 cm3=0.3031875 L303.19 mL

Answer: 0.3032 L


Q6. A hemispherical tank is made up of an iron sheet 1 cm thick. If the inner radius is 1 m, find the volume of the iron used.

Inner radius r=1.00 m. Thickness =1 cm=0.01 m. Outer radius R=1.01 m.

Volume of iron = volume(outer hemisphere) – volume(inner hemisphere)

V=23π(R3r3)=4421(1.01313) m3

1.0131=0.030301. Thus

V4421×0.0303010.06349 m3.

In litres: 63.49 L


Q7. Find the volume of a sphere whose surface area is 154 cm2.

Surface area =4πr2=154. So

r2=1544π=15488/7=154×788=12.25,

so r=3.5 cm

Volume V=43πr3=43×227×(3.5)3=43×227×42.875

=43×227×42.875179.594 cm3.

(You can also simply answer r=3.5 if only radius is required — question asked volume, so value above.)


Q8. A dome is a hemisphere. From inside it was white-washed at total cost \₹4989.60. If white-washing costs \₹20 per m2, find (i) inside surface area of the dome, (ii) volume of air inside the dome.

(i) Area =costrate=4989.6020=249.48 m2.

This is the curved surface area of the hemisphere: 2πr2=249.48So

r2=249.482π=249.4844/7=39.69r=6.3 m.

(ii) Volume of air (hemisphere) =23πr3
r3=6.33=250.047. Hence

V=4421×250.047523.91 m3.

Answers: (i) 249.48 m2 (given), (ii) r=6.3 m and V523.91 m3


Q9. Twenty seven solid iron spheres, each of radius r and surface area S, are melted to form a single sphere with surface area S. Find (i) radius rof the new sphere, (ii) ratio S:S.

Each small sphere volume = 43πr3. Total volume of 27 spheres =2743πr3.

Let new radius be r. Then

43πr3=2743πr3r3=27r3r=3r

Surface area of one small sphere S=4πr2. New sphere S=4πr2=4π(3r)2=94πr2=9S

So S:S=1:9


Q10. A capsule of medicine is a sphere of diameter 3.5 mm. How much medicine (in mm3) is needed to fill it?

Diameter =3.5 mm ⇒ r=1.75 mm =74 mm.

Volume:

V=43πr3=43π(74)3=43π34364=34348π

With π=227:

V=34348×227=53924 mm322.4583 mm3.

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.