Exercise-13.3, Class 10th, Maths, Chapter 13, NCERT

Q1

The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.

Monthly consumption (in units) — Number of consumers
65–85 : 4
85–105 : 5
105–125 : 13
125–145 : 20
145–165 : 14
165–185 : 8
185–205 : 4

Solution

  1. Compute class-marks x and f:

Class f class-mark x f·x
65–85 4 75 300
85–105 5 95 475
105–125 13 115 1495
125–145 20 135 2700
145–165 14 155 2170
165–185 8 175 1400
185–205 4 195 780
---------------------------------
Total 68 Σf x = 9320
  1. Mean

xˉ=ΣfxΣf=932068=137.0588137.06 units

  1. Median

N=68. N/2=34 Cumulative frequencies:

6585: 4
85105: 9
105125: 22
125145: 42
← median class (since 34 lies in this class)

Median class: 125145.
l=125, h=20, f=20, c.f. before=22

Median formula:

Median=l+N2c.f. beforef×h=125+342220×20

=125+  12=137.0 units

  1. Mode

Modal class = class with largest frequency = 125145with f1=20
f0=13 (preceding), f2=14(succeeding), l=125, h=20

Mode=l+f1f02f1f0f2×h=125+2013401314×20

=125+713×20=125+10.7692135.77 units

Comparison / Interpretation:
Mean 137.06, Median =137.0, Mode 135.77 — all three measures are very close, indicating a fairly symmetric distribution around about 136–137 units.


Q2

If the median of the distribution given below is 28.5, find the values of x and y.

Class interval — Frequency
0–10 : 5
10–20 : x
20–30 : 20
30–40 : 15
40–50 : y
50–60 : 5
Total = 60

Solution

Median is 28.5 → it lies in class 2030. Use median formula:

Here N=60, so N/2=30. Median class: 2030 with l=20, h=10, f=20. c.f. before = frequency up to previous class = 5+x.

Median:

28.5=20+30(5+x)20×10=20+25x20×10=20+25x2

So

28.5=20+25x2  25x2=8.5  25x=17  x=8.

Now total frequencies:

5+x+20+15+y+5=60

Substitute x=8:

5+8+20+15+y+5=6053+y=60y=7.

Answer: x=8, y=7


Q3

A life insurance agent found the following data for distribution of ages of 100 policy holders (cumulative ‘below’ form). Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 years.

Age (in years) — Number of policy holders (Below …)
Below 20 : 2
Below 25 : 6
Below 30 : 24
Below 35 : 45
Below 40 : 78
Below 45 : 89
Below 50 : 92
Below 55 : 98
Below 60 :100

Solution

First convert to class frequencies (by differences):

20–25: 6 − 2 = 4
25–30: 24 − 6 = 18
30–35: 45 − 24 = 21
35–40: 78 − 45 = 33
40–45: 89 − 78 = 11
45–50: 92 − 89 = 3
50–55: 98 − 92 = 6
55–60:100 − 98 = 2
(And below 20 group: 2)

Total N=100. Median position =N/2=50. Cumulative frequencies:

Below20: 2
20–25: 2+4 = 6
25–30: 6 +18 = 24
30–35: 24 +21 = 45
35–40: 45 +33 = 78
← median class (since 50th lies here)

Median class = 3540. Use: l=35, h=5, f=33, c.f. before=45

Median=35+504533×5=35+533×5

=35+253335+0.7576=35.76 years (approx)


Q4

The lengths of 40 leaves of a plant are measured correct to the nearest millimetre; the data:

Length (mm) — Number of leaves
118–126 : 3
127–135 : 5
136–144 : 9
145–153 : 12
154–162 : 5
163–171 : 4
172–180 : 2

Find the median length of the leaves.
(Hint: convert to continuous classes: 117.5–126.5, 126.5–135.5, …, 171.5–180.5.)

Solution

Use continuous class limits (class-width h=9):

117.5126.5 : 3 (cf = 3)
126.5135.5 : 5 (cf = 8)
135.5144.5 : 9 (cf = 17)
144.5153.5 :12 (cf = 29)
← median class (since N/2 = 20)
153.5162.5 : 5 (cf = 34)
162.5171.5 : 4 (cf = 38)
171.5180.5 : 2 (cf = 40)

N=40, N/2=20. Median class: 144.5153.5
l c.f. before =17

Median=l+N2c.f. beforef×h=144.5+201712×9

=144.5+312×9=144.5+2.25=146.75 mm


Q5

The following table gives the distribution of the life time of 400 neon lamps. Find the median life time.

Life time (hours) — Number of lamps
1500–2000 : 14
2000–2500 : 56
2500–3000 : 60
3000–3500 : 86
3500–4000 : 74
4000–4500 : 62
4500–5000 : 48

Solution

Total N=400, N/2=200. Cumulative frequencies:

1500–2000 : 14
2000–2500 : 14+56 = 70
2500–3000 : 70+60 = 130
3000–3500 : 130+86 = 216
median class (since 200th lies here)

Median class = 30003500l=3000, h=500, f=86, c.f. before=130

Median=3000+20013086×500=3000+7086×500

=3000+0.8139535×500

=3000+406.97673406.98 hours

Answer can be rounded: 3407 hours (approx)


Q6

100 surnames were picked; frequency distribution of number of letters:

Number of letters — Number of surnames
1–4 : 6
4–7 : 30
7–10 : 40
10–13 : 16
13–16 : 4
16–19 : 4

Determine the median number of letters and find the mean number of letters.

Solution

  1. Median

N=100, N/2=50. Cumulative frequencies:

14 : 6
47 : 6+30 = 36

710: 36+40 = 76
← median class (50th lies here)

Use continuous limits with class-width h=3 (e.g. 0.5–4.5, 4.5–7.5, 7.5–10.5 …). Median class interval in continuous form = 7.510.5 So l=7.5, h=3, f=40, c.f. before = 36.

Median=7.5+503640×3=7.5+1440×3=7.5+1.05=8.55 letters (approx)

  1. Mean

Class-marks x: 2.5, 5.5, 8.5, 11.5, 14.5, 17.5
Frequencies f: 6, 30, 40, 16, 4, 4

Compute fx:

2.5·6 = 15
5.5·30 = 165 (total 180)
8.5·40 = 340 (total 520)
11.5·16 = 184 (total 704)
14.5·4 = 58 (total 762)
17.5·4 = 70 (total 832)
Σf x = 832

xˉ=ΣfxΣf=832100=8.32 letters


👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.