Exercise-11.2, Class 9th, Maths, Chapter 11, NCERT

Useful formula (used throughout): Surface area of a sphere =4πr2
Curved surface area of a hemisphere =2πr2
Total surface area of a hemisphere =3πr2
Use π=227 unless stated otherwise.


Q1. Find surface area of a sphere of radius:

(i) r=10.5

SA=4πr2=4227(10.5)2.

Calculate: 10.52=110.25
  4π=887. So

SA=887×110.25=  88×110.257=  88×15.75=1386 cm2.

(ii) r=5.6

SA=4227(5.6)2.

5.62=31.36

887×31.36=88×31.367=88×4.48=394.24 cm2

(iii) r=14

SA=4227142

142=196. 887×196=88×28=2464 cm2

Answers Q1: (i) 1386 cm2, (ii) 394.24 cm2, (iii) 2464 cm2


Q2. Surface area of a sphere of diameter:

(i) d=14 cm r=7 cm

SA=422772=422749=887×49=88×7=616 cm2

(ii) d=21 cm r=10.5 → same as Q1(i): 1386 cm2

(iii) d=3.5 r=1.75

SA=4227(1.75)2.

1.752=3.0625

887×3.0625=88×3.06257=88×0.4375=38.5 m2

Answers Q2: (i) 616 cm2, (ii) 1386 cm2, (iii) 38.5 m2


Q3. Total surface area of a hemisphere of radius 10 cm. (Use π=3.14)

Total surface area (hemisphere) =3πr2

=3×3.14×102=3×3.14×100=3×314=942 cm2

Answer Q3: 942 cm2


Q4. Radius increases from 7 cm to 14 cm. Ratio of surface areas?

Surface area r2. So ratio

4π(14)24π(7)2=14272=19649=4:1.

Answer Q4: 4:1.


Q5. Hemispherical bowl, inner diameter =10.5 cm ⇒ inner radius r=5.25 cm. Tin-plating inside at `₹16 per 100 cm².

Inside area to be tin-plated = curved surface area of hemisphere =2πr2 with π=227

2227(5.25)2

5.252=27.5625447×27.5625=44×27.56257=44×3.9375=173.25 cm2

Cost =173.25100×16=1.7325×16=27.72 rupees

Answer Q5: Area =173.25 cm2. Cost =27.72


Q6. Find radius of a sphere whose surface area is 154 cm2

Use 4πr2=154 and π=227

r2=1544π=1544(22/7)=15488/7=154×788=107888=12.25.

So r=12.25=3.5 cm

Answer Q6: r=3.5 cm.


Q7. Moon diameter is one-fourth that of Earth. Ratio of their surface areas?

If Dmoon=14Dearth,  radii ratio =14. Surface area ratio =(14)2=116

Answer Q7: 1:16 (moon : earth) or moon’s surface area is 116 of Earth’s.


Q8. Hemispherical bowl made of steel, thickness 0.25 cm, inner radius =5 cm. Find outer curved surface area.

Outer radius R=5+0.25=5.25 cm. Outer curved surface area of hemisphere =2πR2

2227(5.25)2=173.25 cm2.

Answer Q8: Outer curved surface area =173.25 cm2


Q9. A right circular cylinder just encloses a sphere of radius r. Find:

(i) Surface area of the sphere =4πr2

(ii) Curved surface area of the cylinder: cylinder radius =r, height =2r, so curved area =2πrh=2πr×2r=4πr2

(iii) Ratio of (i) to (ii) =4πr24πr2=1:1

Answer Q9: (i) 4πr2 (ii) 4πr2 (iii) Ratio 1:1

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.