Exercise-2.2, Class 10th, Maths, Chapter 2, NCERT

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Recall: For quadratic ax2+bx+c with zeroes α,β

α+β=ba,αβ=ca.

(i) x22x8

Factor: x22x8=(x4)(x+2)

Zeroes: 4 and 2.

Sum =4+(2)=2=ba=21=2.

Product =4×(2)=8=ca=81.


(ii) 4s24s+1

Recognize: (2s1)2=4s24s+1.

Zero (double): s=12 (repeated root).

Sum =12+12=1=ba=44=1

Product =1212=14=ca=14.


(iii) 6x27x3
= 6x237x

Compute discriminant: D=(7)246(3)=49+72=121, D=11

Roots:

x=7±1112x=1812=32,x=412=13.

Sum =3213=926=76=ba=76=76.

Product =32(13)=12=ca=36=12.


(iv) 4u2+8u

Factor: 4u2+8u=4u(u+2).

Zeroes: u=0 and u=2.

Sum =0+(2)=2=ba=84=2.
Product =0(2)=0=ca=04.


(v) t215

Use difference of squares: t215=(t15)(t+15)

Zeroes: 15 and 15.

Sum =0=ba=01.
Product =(15)2=15=ca.


(vi) 3x2x4

Discriminant: D=(1)243(4)=1+48=49, D=7.

Roots:

x=1±76  x=86=43 ? — check: 86=43andx=66=1.

Zeroes: 43 and 1.

Sum =43+(1)=13=ba=13=13.
Product =43×(1)=43=ca=43.

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.