Tag: Chapter 3 Matrices Class 12th Maths Answers and Solutions

  • Exercise-3.3, Class 12th, Maths, Chapter 3, NCERT

    Q1. (i)

    Matrix A=[5121]

    This is a column matrix (3×1).


    Transpose:

    To find A(or AT), we interchange rows and columns.

    So,

    A=[5121]

    Answer:

    A=[5121]

    (This is now a row matrix (1×3).)

     

    Q1- (ii).

    Matrix B=[1123]

    This is a 2×2 matrix.

    Transpose:

    We swap rows with columns:

    B=[1213]

    Answer:

    B=[1213]

     

    Q1 (iii)

    Matrix

    A=[156356231]

    This is a 3×3 matrix (3 rows, 3 columns).


    To find: A (the transpose)

    To find the transpose, we interchange rows and columns — that is, the first row becomes the first column, the second row becomes the second column, and so on.


    Step-by-step:

    Row Becomes Column
    Row 1 = (1,  5,  6) Column 1 = [156]
    Row 2 = (3,  5,  6)

    Column 2 = [356]

    Row 3 = (2,  3,  1) Column 3 = [231]

    Transpose:

    A=[132553661]

     

    A=[5121]

    (This is now a row matrix (1×3).)

     

    Question 2.

    Given:

    A=[123579211],B=[415120131]

    We have to verify:

    1️⃣ (A+B)=A+B

    2️⃣ (AB)=AB


    Step 1: Find A + B

    Add corresponding elements:

    A+B=[(1)+(4)2+13+(5)5+17+29+0(2)+11+31+1]=[532699142]


    Now find (A + B)′

    Take the transpose — interchange rows and columns:

    (A+B)=[561394292]


    Step 2: Find A′ and B′ separately

    Transpose of A:

    A=[152271391]

    Transpose of B:

    B=[411123501]


    Step 3: Find A′ + B′

    A+B=[(1)+(4)5+1(2)+12+17+21+33+(5)9+01+1]=[561394292]

    This is exactly equal to (A+B).

    Hence,

    (A+B)=A+B

    Step 4: Now find A – B

    Subtract corresponding elements:

    AB=[(1)(4)213(5)517290(2)11311]=[318459320]


    Now find (A – B)′

    (AB)=[343152890]

    Step 5: Find A′ – B′

    AB=[(1)(4)51(2)12172133(5)9011]=[343152890]

    This is exactly equal to (AB).

    Hence,

    (AB)=AB

     

    Question 3.

    Given

    A=[341201]


    B=[121123]

    , then verify that

    (i) (A + B)′ = A′ + B′ 

    (ii) (A – B)′ = A′ – B′

     Determine A from A

    Remember: A is the transpose of A.
    So to get A, we transpose A again.

    A=(A)=[310421]

    Hence

    A=[310421],B=[121123]

    Compute A+B

    Add corresponding elements:

    A+B=[3+(1)1+20+14+12+21+3]=[211544]

     Compute (A+B)

    Transpose the above matrix:

    (A+B)=[251414]

     Compute A+B

    We already know:

    A=[341201],B=[112213]

    Now add elementwise:

    A+B=[3+(1)4+11+22+20+11+3]=[251414]

    Therefore

    (A+B)=A+B

     Compute AB

    AB=[3(1)1201412213]=[431302] Compute (AB)

    (AB)=[433012]

     Compute AB

    AB=[3(1)4112220113]=[433012]

    Therefore

    (AB)=AB

    Question 4.

    Given:

    A=[2312],B=[1012]

    We need to find

    (A+2B)

     Find A from A

    Since A=[2312],

    Transpose it to get A:

    A=(A)=[2132]

     Compute 2B

    Multiply each element of B by 2:

    2B=[2×(1)2×02×12×2]=[2024]

     Compute A+2B

    A+2B=[2132]+[2024]=[4156]

     Find (A+2B)

    Take the transpose:

    (A+2B)=[4516]

    Question 5.

    For the matrices A and B, verify that (AB)′ = B′A′, where

    Concept Recap

    For any conformable matrices A and B:

    (AB)=BA

    That is, the transpose of a product = product of transposes in reverse order.

    Now, let’s check numerically.


    (i)

    A=[143],B=[121]


    Step 1️⃣: Compute AB

    Since A is 3×1 and B is 1×3,
    AB will be a 3×3 matrix.

    AB=[143][121]=[1(1)1(2)1(1)4(1)4(2)4(1)3(1)3(2)3(1)]=[121484363]

     Find (AB)

    Transpose means interchange rows and columns:

    (AB)=[143286143]

     Compute BA

    Now find B and A.

    B=[121],A=[143]

    Multiply B (3×1) with A (1×3):

    BA=[121][143]=[(1)(1)(1)(4)(1)(3)(2)(1)(2)(4)(2)(3)(1)(1)(1)(4)(1)(3)]

    =[143286143]

    Hence,

    (AB)=BA


    (ii)

    A=[012],B=[157]

    Compute AB

    AB=[012][157]=[0(1)0(5)0(7)1(1)1(5)1(7)2(1)2(5)2(7)]=[00015721014]

     Find (AB)

    (AB)=[01205100714]

    Compute BA

    B=[157],A=[012]

    Multiply:

    BA=[157][012]=[1(0)1(1)1(2)5(0)5(1)5(2)7(0)7(1)7(2)]=[01205100714]

    Hence,

    (AB)=BA

     

    Question 6.

    verify that A′ A = I

    (i)

    A=[cosαsinαsinαcosα]

     Find A

    A=[cosαsinαsinαcosα]

    Compute AA

    AA=[cosαsinαsinαcosα][cosαsinαsinαcosα]
    AA=[(cos2α+sin2α)(cosαsinαsinαcosα)(sinαcosαcosαsinα)(sin2α+cos2α)]=[1001]=I

    Hence, AA=I

    (ii)

    A=[sinαcosαcosαsinα]

     Find A

    A=[sinαcosαcosαsinα]

     Compute AA

    AA=[sinαcosαcosαsinα][sinαcosαcosαsinα]
    AA=[(sin2α+cos2α)(sinαcosαcosαsinα)(cosαsinαsinαcosα)(cos2α+sin2α)]=[1001]=I

    Hence, AA=I

    Q7.

    Recall:

    • A matrix A is symmetric if A=A.

    • A matrix A is skew-symmetric if A=A. (Note diagonal entries of a skew-symmetric matrix must be 0.)


    (i) Show A is symmetric

    A=[115121513]

    Find the transpose A (swap rows and columns):

    A=[115121513]

    We see A=A.
    Therefore A is symmetric


    (ii) Show A is skew-symmetric

    A=[011101110]

    Compute the transpose:

    A=[011101110]

    Compute A:

    A=[011101110]

    We have A=A. Also all diagonal entries are 0, as required.

    Therefore A is skew-symmetric

     

    Question 8.

    (i) (A + A′) is a symmetric matrix

    (ii) (A – A′) is a skew symmetric matrix

    Given

    A=[1567].

    First find the transpose:

    A=[1657].


    (i) A+A

    Compute:

    A+A=[1567]+[1657]=[2111114]

    Take its transpose:

    (A+A)=[2111114]Since (A+A)=A+A, the matrix A+A is symmetric.


    (ii) AA

    Compute:

    AA=[1567][1657]=[0110]

    Take its transpose:

    (AA)=[0110]=(AA)

    Since (AA)=(AA), the matrix AA is skew-symmetric.

     

    Question 9. Find

    12(A+A)and12(AA)

    We are given:

    A=[0aba0cbc0]

     Find A

    Transpose means interchange rows and columns:

    A=[0aba0cbc0] Compute A+A

    Add corresponding entries of A and A:

    A+A=[0+0a+(a)b+(b)(a)+a0+0c+(c)(b)+b(c)+c0+0]=[000000000]

     Compute AA

    Subtract corresponding entries:

    AA=[00a(a)b(b)(a)a00c(c)(b)b(c)c00]=[02a2b2a02c2b2c0]

    Multiply by ½

    12(A+A)=12[000000000]=[000000000]
    12(AA)=12[02a2b2a02c2b2c0]=[0aba0cbc0]

    Final Answers

    12(A+A)=[000000000],12(AA)=[0aba0cbc0]

    Question 10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

    we’ll write each matrix A as

    A=12(A+A)  +  12(AA),

    where S=12(A+A) is symmetric and K=12(AA) is skew-symmetric. I’ll give S and K for each part.


    (i) A=[3511]

    A=[3151]
    S=12(A+A)=12[6662]=[3331]


    K=12(AA)=12[0440]=[0220]

    So A=S+K with S symmetric and K skew.


    (ii) A=[622231213]

    This matrix is already symmetric (check A=A), so

    S=12(A+A)=A=[622231213],K=12(AA)=0=[000000000].


    (iii) A=[331221452]

    First compute A=[324325112]

    Then

    S=12(A+A)=12[615144544]=[3125212225222],

    which is symmetric, and

    K=12(AA)=12[053506360]=[0523252033230],

    which is skew-symmetric. (You can check S=S and K=K)


    (iv) A=[1512]

    A=[1152]
    S=12(A+A)=12[2444]=[1222],

    K=12(AA)=12[0660]=[0330].

    Question 11

    Given:
    A and B are symmetric matrices of the same order.
    That means:

    A=AandB=B

    We need to find the nature of the matrix ABBA

     Take transpose of ABBA

    (ABBA)=(AB)(BA)=BAAB

    Since A=A and B=B,

    (ABBA)=BAAB=(ABBA)

     Interpretation

    A matrix M is skew-symmetric if M=M.

    Here we found (ABBA)=(ABBA) Therefore, ABBA is a skew-symmetric matrix.

    Correct Option: (A) Skew symmetric matrix


    Question 12

    Given:

    A=[cosαsinαsinαcosα],andA+A=I

    We must find the value of α

    Compute A

    A=[cosαsinαsinαcosα]

     Compute A+A

    A+A=[cosα+cosαsinα+sinαsinαsinαcosα+cosα]=[2cosα002cosα]

     Given A+A=I

    [2cosα002cosα]=[1001]

    This gives:

    2cosα=1    cosα=12

     Solve for α

    cosα=12α=π3

     Final Answers 
    1️⃣ ABBA → Skew-symmetric matrix
    2️⃣ A+A=Iα=π3