Exercise-3.3, Class 12th, Maths, Chapter 3, NCERT

Q1. (i)

Matrix A=[5121]

This is a column matrix (3×1).


Transpose:

To find A(or AT), we interchange rows and columns.

So,

A=[5121]

Answer:

A=[5121]

(This is now a row matrix (1×3).)

 

Q1- (ii).

Matrix B=[1123]

This is a 2×2 matrix.

Transpose:

We swap rows with columns:

B=[1213]

Answer:

B=[1213]

 

Q1 (iii)

Matrix

A=[156356231]

This is a 3×3 matrix (3 rows, 3 columns).


To find: A (the transpose)

To find the transpose, we interchange rows and columns — that is, the first row becomes the first column, the second row becomes the second column, and so on.


Step-by-step:

Row Becomes Column
Row 1 = (1,  5,  6) Column 1 = [156]
Row 2 = (3,  5,  6)

Column 2 = [356]

Row 3 = (2,  3,  1) Column 3 = [231]

Transpose:

A=[132553661]

 

A=[5121]

(This is now a row matrix (1×3).)

 

Question 2.

Given:

A=[123579211],B=[415120131]

We have to verify:

1️⃣ (A+B)=A+B

2️⃣ (AB)=AB


Step 1: Find A + B

Add corresponding elements:

A+B=[(1)+(4)2+13+(5)5+17+29+0(2)+11+31+1]=[532699142]


Now find (A + B)′

Take the transpose — interchange rows and columns:

(A+B)=[561394292]


Step 2: Find A′ and B′ separately

Transpose of A:

A=[152271391]

Transpose of B:

B=[411123501]


Step 3: Find A′ + B′

A+B=[(1)+(4)5+1(2)+12+17+21+33+(5)9+01+1]=[561394292]

This is exactly equal to (A+B).

Hence,

(A+B)=A+B

Step 4: Now find A – B

Subtract corresponding elements:

AB=[(1)(4)213(5)517290(2)11311]=[318459320]


Now find (A – B)′

(AB)=[343152890]

Step 5: Find A′ – B′

AB=[(1)(4)51(2)12172133(5)9011]=[343152890]

This is exactly equal to (AB).

Hence,

(AB)=AB

 

Question 3.

Given

A=[341201]


B=[121123]

, then verify that

(i) (A + B)′ = A′ + B′ 

(ii) (A – B)′ = A′ – B′

 Determine A from A

Remember: A is the transpose of A.
So to get A, we transpose A again.

A=(A)=[310421]

Hence

A=[310421],B=[121123]

Compute A+B

Add corresponding elements:

A+B=[3+(1)1+20+14+12+21+3]=[211544]

 Compute (A+B)

Transpose the above matrix:

(A+B)=[251414]

 Compute A+B

We already know:

A=[341201],B=[112213]

Now add elementwise:

A+B=[3+(1)4+11+22+20+11+3]=[251414]

Therefore

(A+B)=A+B

 Compute AB

AB=[3(1)1201412213]=[431302] Compute (AB)

(AB)=[433012]

 Compute AB

AB=[3(1)4112220113]=[433012]

Therefore

(AB)=AB

Question 4.

Given:

A=[2312],B=[1012]

We need to find

(A+2B)

 Find A from A

Since A=[2312],

Transpose it to get A:

A=(A)=[2132]

 Compute 2B

Multiply each element of B by 2:

2B=[2×(1)2×02×12×2]=[2024]

 Compute A+2B

A+2B=[2132]+[2024]=[4156]

 Find (A+2B)

Take the transpose:

(A+2B)=[4516]

Question 5.

For the matrices A and B, verify that (AB)′ = B′A′, where

Concept Recap

For any conformable matrices A and B:

(AB)=BA

That is, the transpose of a product = product of transposes in reverse order.

Now, let’s check numerically.


(i)

A=[143],B=[121]


Step 1️⃣: Compute AB

Since A is 3×1 and B is 1×3,
AB will be a 3×3 matrix.

AB=[143][121]=[1(1)1(2)1(1)4(1)4(2)4(1)3(1)3(2)3(1)]=[121484363]

 Find (AB)

Transpose means interchange rows and columns:

(AB)=[143286143]

 Compute BA

Now find B and A.

B=[121],A=[143]

Multiply B (3×1) with A (1×3):

BA=[121][143]=[(1)(1)(1)(4)(1)(3)(2)(1)(2)(4)(2)(3)(1)(1)(1)(4)(1)(3)]

=[143286143]

Hence,

(AB)=BA


(ii)

A=[012],B=[157]

Compute AB

AB=[012][157]=[0(1)0(5)0(7)1(1)1(5)1(7)2(1)2(5)2(7)]=[00015721014]

 Find (AB)

(AB)=[01205100714]

Compute BA

B=[157],A=[012]

Multiply:

BA=[157][012]=[1(0)1(1)1(2)5(0)5(1)5(2)7(0)7(1)7(2)]=[01205100714]

Hence,

(AB)=BA

 

Question 6.

verify that A′ A = I

(i)

A=[cosαsinαsinαcosα]

 Find A

A=[cosαsinαsinαcosα]

Compute AA

AA=[cosαsinαsinαcosα][cosαsinαsinαcosα]
AA=[(cos2α+sin2α)(cosαsinαsinαcosα)(sinαcosαcosαsinα)(sin2α+cos2α)]=[1001]=I

Hence, AA=I

(ii)

A=[sinαcosαcosαsinα]

 Find A

A=[sinαcosαcosαsinα]

 Compute AA

AA=[sinαcosαcosαsinα][sinαcosαcosαsinα]
AA=[(sin2α+cos2α)(sinαcosαcosαsinα)(cosαsinαsinαcosα)(cos2α+sin2α)]=[1001]=I

Hence, AA=I

Q7.

Recall:

  • A matrix A is symmetric if A=A.

  • A matrix A is skew-symmetric if A=A. (Note diagonal entries of a skew-symmetric matrix must be 0.)


(i) Show A is symmetric

A=[115121513]

Find the transpose A (swap rows and columns):

A=[115121513]

We see A=A.
Therefore A is symmetric


(ii) Show A is skew-symmetric

A=[011101110]

Compute the transpose:

A=[011101110]

Compute A:

A=[011101110]

We have A=A. Also all diagonal entries are 0, as required.

Therefore A is skew-symmetric

 

Question 8.

(i) (A + A′) is a symmetric matrix

(ii) (A – A′) is a skew symmetric matrix

Given

A=[1567].

First find the transpose:

A=[1657].


(i) A+A

Compute:

A+A=[1567]+[1657]=[2111114]

Take its transpose:

(A+A)=[2111114]Since (A+A)=A+A, the matrix A+A is symmetric.


(ii) AA

Compute:

AA=[1567][1657]=[0110]

Take its transpose:

(AA)=[0110]=(AA)

Since (AA)=(AA), the matrix AA is skew-symmetric.

 

Question 9. Find

12(A+A)and12(AA)

We are given:

A=[0aba0cbc0]

 Find A

Transpose means interchange rows and columns:

A=[0aba0cbc0] Compute A+A

Add corresponding entries of A and A:

A+A=[0+0a+(a)b+(b)(a)+a0+0c+(c)(b)+b(c)+c0+0]=[000000000]

 Compute AA

Subtract corresponding entries:

AA=[00a(a)b(b)(a)a00c(c)(b)b(c)c00]=[02a2b2a02c2b2c0]

Multiply by ½

12(A+A)=12[000000000]=[000000000]
12(AA)=12[02a2b2a02c2b2c0]=[0aba0cbc0]

Final Answers

12(A+A)=[000000000],12(AA)=[0aba0cbc0]

Question 10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

we’ll write each matrix A as

A=12(A+A)  +  12(AA),

where S=12(A+A) is symmetric and K=12(AA) is skew-symmetric. I’ll give S and K for each part.


(i) A=[3511]

A=[3151]
S=12(A+A)=12[6662]=[3331]


K=12(AA)=12[0440]=[0220]

So A=S+K with S symmetric and K skew.


(ii) A=[622231213]

This matrix is already symmetric (check A=A), so

S=12(A+A)=A=[622231213],K=12(AA)=0=[000000000].


(iii) A=[331221452]

First compute A=[324325112]

Then

S=12(A+A)=12[615144544]=[3125212225222],

which is symmetric, and

K=12(AA)=12[053506360]=[0523252033230],

which is skew-symmetric. (You can check S=S and K=K)


(iv) A=[1512]

A=[1152]
S=12(A+A)=12[2444]=[1222],

K=12(AA)=12[0660]=[0330].

Question 11

Given:
A and B are symmetric matrices of the same order.
That means:

A=AandB=B

We need to find the nature of the matrix ABBA

 Take transpose of ABBA

(ABBA)=(AB)(BA)=BAAB

Since A=A and B=B,

(ABBA)=BAAB=(ABBA)

 Interpretation

A matrix M is skew-symmetric if M=M.

Here we found (ABBA)=(ABBA) Therefore, ABBA is a skew-symmetric matrix.

Correct Option: (A) Skew symmetric matrix


Question 12

Given:

A=[cosαsinαsinαcosα],andA+A=I

We must find the value of α

Compute A

A=[cosαsinαsinαcosα]

 Compute A+A

A+A=[cosα+cosαsinα+sinαsinαsinαcosα+cosα]=[2cosα002cosα]

 Given A+A=I

[2cosα002cosα]=[1001]

This gives:

2cosα=1    cosα=12

 Solve for α

cosα=12α=π3

 Final Answers 
1️⃣ ABBA → Skew-symmetric matrix
2️⃣ A+A=Iα=π3

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.