Tag: Chapter 4 NCERT Maths Class 12th Solution

  • Exercise-4.4, Class 12th, Maths, Part -2

    Question 14 :

    For the matrix A=[3211], find the numbers a and b such that

    A2+aA+bI=0.

    Solution:

    Given:

    A=[3211]

    We are to find a and b such that

    A2+aA+bI=0

    Step 1: Compute A2

    A2=[3211][3211]Perform the multiplication:

    A2=[3×3+2×13×2+2×11×3+1×11×2+1×1]=[9+26+23+12+1]=[11843]

    Step 2: Substitute in the equation

    A2+aA+bI=0

    That means:

    [11843]+a[3211]+b[1001]=[0000]

    Step 3: Combine all matrices

    [11+3a+b8+2a4+a3+a+b]=[0000]

    Step 4: Equate corresponding elements to zero

    From the first row, first column:

    11+3a+b=0(1)

    From the first row, second column:

    8+2a=0(2)

    From the second row, first column:

    4+a=0(3)

    From the second row, second column:

    3+a+b=0(4)

    Step 5: Solve for a and b

    From (3):

    a=4

    Substitute a=4:

    3+(4)+b=0    b=1

    So a=4 and b=1.

    Step 6: Verification

    Check equation (1):

    11+3(4)+1=1112+1=0

    True. Check (2):

    8+2(4)=88=0True.

    Final Answer:

    a=4,b=1

     

    Question 15 

    For the matrix A=[111123213], show that

    A36A2+5A+11I=O.

    Hence, find A1.

    Solution

    Step 1 — compute A2 and A3.

    A=[111123213]

    Compute A2=AA:

    A2=[42138147314]

    Compute A3=A2A:

    A3=[871232769321358]

    Step 2 — form the combination A36A2+5A+11I.

    Calculate termwise:

    A36A2+5A+11I=[871232769321358]6[42138147314]+5[111123213]+11[100010001]=[824+5+11712+5+016+5+023+18+5+02748+10+1169+8415+03242+10+013+185+05884+15+11]=[000000000]

    So the relation is verified:

    A36A2+5A+11I=O

    Step 3 — find A1.

    Starting from

    A36A2+5A+11I=O,

    multiply on the right by A1 (which is valid because A is invertible if we can find A1 from this equation):

    A26A+5I+11A1=O

    Rearrange to solve for A1:

    11A1=A2+6A5I,A1=111(6AA25I)

    Now substitute the matrices A and A2:

    6AA25I=6[111123213][42138147314]5[100010001]
    =[6456206106(3)0128518(14)012706(3)018145]=[345914531]

    Thus

    A1=111[345914531]

    You can write it explicitly as

    A1=[311411511911111411511311111]

    (One may verify AA1=I)

    Question 16 : If

    A=[211121112],

    verify that

    A36A2+9A4I=O,

    and hence find A1.

    Solution

    Step 1 — compute A2.

    A2=AA=[211121112][211121112]=[655565556](Each entry calculated: e.g. top-left =22+(1)(1)+11=4+1+1=6, top-middle =2(1)+(1)2+1(1)=221=5

    Step 2 — compute A3.

    A3=A2A=[222121212221212122].

    (For example, top-left =62+(5)(1)+51=12+5+5=22, top-middle =6(1)+(5)2+5(1)=6105=21

    Step 3 — form the combination A36A2+9A4I

    Compute termwise:

    A36A2+9A4I=[222121212221212122]6[655565556]+9[211121112]4[100010001]=[2236+18421+309+02130+9+021+309+02236+18421+309+02130+9+021+309+02236+184]=[000000000]

    Thus the identity is verified:

    A36A2+9A4I=O

    Step 4 — find A1.

    Start from the matrix polynomial

    A36A2+9A4I=O

    Right-multiply by A1 (valid since the relation will imply invertibility):

    A26A+9I4A1=O

    Rearrange to solve for A1:

    4A1=A26A+9IA1=14(A26A+9I)

    Now substitute the matrices A and A2:

    A26A+9I=[655565556]6[211121112]+9[100010001]Compute it:

    A26A+9I=[612+95+6+056+05+6+0612+95+6+056+05+6+0612+9]=[311131113]

    Therefore

    A1=14[311131113]=[341414143414141434]

    (You can verify AA1=I directly.)

    Final answer:

    A36A2+9A4I=O,A1=[341414143414141434]

     

    Question 17 :

    Let A be a nonsingular square matrix of order 3×3. Then adjA is equal to

    (A) A
    (B) A2
    (C) A3
    (D) 3A


    Solution:

    We know the formula for the determinant of the adjugate (adjoint) of a square matrix:

    adjA=An1where n is the order of the square matrix.

    Here, A is of order 3×3.
    So n=3

    adjA=A31=A2

    Final Answer:

    adjA=A2

    Hence, the correct option is (B) A2

    Question 18:

    If A is an invertible matrix of order 2, then det(A1) is equal to

    (A) det(A)
    (B) 1det(A)
    (C) 1
    (D) 0


    Solution:

    We know the fundamental property of determinants:

    det(A1)=1det(A)

    provided A is invertible (that is, det(A)0).

    Final Answer:

    det(A1)=1det(A)

    Hence, the correct option is (B) 1det(A).

  • Exercise-4.3, Class 12th, Maths, Chapter 4, NCERT

    1. Write minors and cofactors of the elements of the following determinants:

    (i) Δ=2403

    For a 2×2 determinant the minor Mij of element aij is the determinant left after deleting its row and column; for 2×2 deleting a row & column leaves a 1×1 number.

    Elements and their minors:

    • a11=2:  M11=3. Cofactor A11=(1)1+1M11=+3

    • a12=4:  M12=0. Cofactor A12=(1)1+2M12=0=0

    • a21=0:  M21=4. Cofactor A21=(1)2+1M21=4

    • a22=3:  M22=2. Cofactor A22=(1)2+2M22=+2

    (You can check: expansion along first row gives Δ=2A11+4A12=23+40=6, and direct determinant 2340=6)


    (ii) Δ=acbd

    Minors (each 1×1 entry):

    • M11=d,  A11=+d

    • M12=b,  A12=(1)1+2b=b

    • M21=c,  A21=(1)2+1c=c

    • M22=a,  A22=+a

    (So cofactors matrix is (dbca))


    2. Write minors and cofactors for the following 3×3 determinants:

    (i) I3=100010001

    We give minors Mij and cofactors Aij=(1)i+jMij

    Because I3 is diagonal, minors are determinants of the 2×2submatrices:

    Row 1:

    • M11=1001=1,  A11=+1

    • M12=0001=0,  A12=0=0

    • M13=0100=0,  A13=+0=0

    Row 2:

    • M21=0001=0,  A21=0=0

    • M22=1001=1,  A22=+1

    • M23=1000=0,  A23=0=0

    Row 3:

    • M31=0010=0,  A31=+0=0

    • M32=1000=0,  A32=0=0

    • M33=1001=1,  A33=+1

    (So adj I3 = transpose of cofactor matrix = identity again.)


    (ii) Δ=104351012

    Compute minors (each is a 2×2 determinant) and cofactors:

    Row 1:

    • M11=5112=5211=101=9,  A11=+9

    • M12=3102=3210=6,  A12=(1)1+26=6

    • M13=3501=3150=3,  A13=+3

    Row 2:

    • M21=0412=0241=4,  A21=(1)2+1(4)=+4

    • M22=1402=1240=2,  A22=+2

    • M23=1001=1100=1,  A23=(1)2+31=1

    Row 3:

    • M31=0451=0145=20,  A31=(1)3+1(20)=20
      (note sign: (1)4=+1, so A31=+(20)=20

    • M32=1431=1143=112=11,  A32=(1)3+2(11)=+11

    • M33=1035=1503=5,  A33=(1)3+35=+5

    (You can verify determinant by expansion: Δ=1A11+0A12+4A13=19+0+43=9+12=21

    Direct check yields same.)


    3. Using cofactors of elements of the second row, evaluate

    Δ=538201123

    We will expand along the second row: Δ=a21A21+a22A22+a23A23

    Compute the cofactors (minors first):

    • For a21=2: M21=3823=3382=916=7
      A21=(1)2+1M21=(7)=+7

    • For a22=0: M22=5813=5381=158=7
      A22=(1)2+2M22=+7

    • For a23=1: M23=5312=5231=103=7
      A23=(1)2+3M23=7

    Now expansion:

    Δ=2A21+0A22+1A23=27+0+1(7)=147=7

    (You may check by any other expansion; result is 7.)


    4. Using cofactors of elements of the third column, evaluate

    Δ=111xyzyzx

    We expand along third column: Δ=a13A13+a23A23+a33A33
    where a13=1,  a23=z,  a33=x

    Compute minors and cofactors:

    • A13=(1)1+3M13=(1)4M13=+M13
      M13=xyyz=xzy2

    • A23=(1)2+3M23=(1)5(M23)=M23 (Simpler: A23=M23)
      M23=11yz=1z1y=zy
      So A23=(zy)=yz

    • A33=(1)3+3M33=+M33
      M33=11xy=1y1x=yx
      So A33=yx

    Now expand:

    Δ=1(xzy2)+z(yz)+x(yx)

    Simplify term-by-term:

    Δ=xzy2+zyz2+xyx2.

    Group like terms:

    Δ=x2+(xz+zy+xy)(y2+z2)

    We can rewrite symmetric grouping if desired. But we can also notice a factorization — rearrange as

    Δ=(x2+y2+z2)+(xy+yz+zx).

    Thus

    Δ=(xy+yz+zx)(x2+y2+z2)

    (That is the simplest closed form. You may also write Δ=12[(xy)2+(yz)2+(zx)2] — indeed expanding that gives the same value. So Δ0 and equals zero exactly when x=y=z.)


    5. If Δ=[aij] is the 3×3 determinant and Aij are cofactors of aij, then which of the following equals Δ?

    Options:

    • (A) a11A31+a12A32+a13A33

    • (B) a11A11+a12A21+a13A31

    • (C) a21A11+a22A12+a23A13

    • (D) a11A11+a21A21+a31A31

    Solution / reasoning.

    Standard properties of cofactors / expansions:

    • Determinant expansion along the first row gives
      Δ=a11A11+a12A12+a13A13

    • Expansion along the first column gives
      Δ=a11A11+a21A21+a31A31

    Option (D) exactly matches the expansion along the first column, so it equals Δ.
    Options (A), (B), (C) are mixed-index combinations that do not in general equal Δ (they give either other identities or zero). For example, the sum of elements of one row multiplied by cofactors of a different row equals 0.

    Therefore the correct choice is

    (D)  a11A11+a21A21+a31A31