Exercise-4.4, Class 12th, Maths, Part -2

Question 14 :

For the matrix A=[3211], find the numbers a and b such that

A2+aA+bI=0.

Solution:

Given:

A=[3211]

We are to find a and b such that

A2+aA+bI=0

Step 1: Compute A2

A2=[3211][3211]Perform the multiplication:

A2=[3×3+2×13×2+2×11×3+1×11×2+1×1]=[9+26+23+12+1]=[11843]

Step 2: Substitute in the equation

A2+aA+bI=0

That means:

[11843]+a[3211]+b[1001]=[0000]

Step 3: Combine all matrices

[11+3a+b8+2a4+a3+a+b]=[0000]

Step 4: Equate corresponding elements to zero

From the first row, first column:

11+3a+b=0(1)

From the first row, second column:

8+2a=0(2)

From the second row, first column:

4+a=0(3)

From the second row, second column:

3+a+b=0(4)

Step 5: Solve for a and b

From (3):

a=4

Substitute a=4:

3+(4)+b=0    b=1

So a=4 and b=1.

Step 6: Verification

Check equation (1):

11+3(4)+1=1112+1=0

True. Check (2):

8+2(4)=88=0True.

Final Answer:

a=4,b=1

 

Question 15 

For the matrix A=[111123213], show that

A36A2+5A+11I=O.

Hence, find A1.

Solution

Step 1 — compute A2 and A3.

A=[111123213]

Compute A2=AA:

A2=[42138147314]

Compute A3=A2A:

A3=[871232769321358]

Step 2 — form the combination A36A2+5A+11I.

Calculate termwise:

A36A2+5A+11I=[871232769321358]6[42138147314]+5[111123213]+11[100010001]=[824+5+11712+5+016+5+023+18+5+02748+10+1169+8415+03242+10+013+185+05884+15+11]=[000000000]

So the relation is verified:

A36A2+5A+11I=O

Step 3 — find A1.

Starting from

A36A2+5A+11I=O,

multiply on the right by A1 (which is valid because A is invertible if we can find A1 from this equation):

A26A+5I+11A1=O

Rearrange to solve for A1:

11A1=A2+6A5I,A1=111(6AA25I)

Now substitute the matrices A and A2:

6AA25I=6[111123213][42138147314]5[100010001]
=[6456206106(3)0128518(14)012706(3)018145]=[345914531]

Thus

A1=111[345914531]

You can write it explicitly as

A1=[311411511911111411511311111]

(One may verify AA1=I)

Question 16 : If

A=[211121112],

verify that

A36A2+9A4I=O,

and hence find A1.

Solution

Step 1 — compute A2.

A2=AA=[211121112][211121112]=[655565556](Each entry calculated: e.g. top-left =22+(1)(1)+11=4+1+1=6, top-middle =2(1)+(1)2+1(1)=221=5

Step 2 — compute A3.

A3=A2A=[222121212221212122].

(For example, top-left =62+(5)(1)+51=12+5+5=22, top-middle =6(1)+(5)2+5(1)=6105=21

Step 3 — form the combination A36A2+9A4I

Compute termwise:

A36A2+9A4I=[222121212221212122]6[655565556]+9[211121112]4[100010001]=[2236+18421+309+02130+9+021+309+02236+18421+309+02130+9+021+309+02236+184]=[000000000]

Thus the identity is verified:

A36A2+9A4I=O

Step 4 — find A1.

Start from the matrix polynomial

A36A2+9A4I=O

Right-multiply by A1 (valid since the relation will imply invertibility):

A26A+9I4A1=O

Rearrange to solve for A1:

4A1=A26A+9IA1=14(A26A+9I)

Now substitute the matrices A and A2:

A26A+9I=[655565556]6[211121112]+9[100010001]Compute it:

A26A+9I=[612+95+6+056+05+6+0612+95+6+056+05+6+0612+9]=[311131113]

Therefore

A1=14[311131113]=[341414143414141434]

(You can verify AA1=I directly.)

Final answer:

A36A2+9A4I=O,A1=[341414143414141434]

 

Question 17 :

Let A be a nonsingular square matrix of order 3×3. Then adjA is equal to

(A) A
(B) A2
(C) A3
(D) 3A


Solution:

We know the formula for the determinant of the adjugate (adjoint) of a square matrix:

adjA=An1where n is the order of the square matrix.

Here, A is of order 3×3.
So n=3

adjA=A31=A2

Final Answer:

adjA=A2

Hence, the correct option is (B) A2

Question 18:

If A is an invertible matrix of order 2, then det(A1) is equal to

(A) det(A)
(B) 1det(A)
(C) 1
(D) 0


Solution:

We know the fundamental property of determinants:

det(A1)=1det(A)

provided A is invertible (that is, det(A)0).

Final Answer:

det(A1)=1det(A)

Hence, the correct option is (B) 1det(A).

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.