Tag: class 12th Maths Exercise 5.1 solution

  • Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

    Question 1 to 12:


    Q1. Prove that the function

    f(x)=5x3

    is continuous at x=0, x=3 and x=5.

    Solution

    The function f(x)=5x3 is a polynomial function.
    We know from theory that every polynomial function is continuous at every real number.  

    To verify at specific points:

    At x=0

    f(0)=5(0)3=3
    limx0f(x)=limx0(5x3)=5(0)3=3

    Since

    limx0f(x)=f(0)f(x) is continuous at x=0

    At x=3

    f(3)=5(3)3=18
    limx3(5x3)=5(3)3=18

    Thus

    limx3f(x)=f(3)

    At x=5

    f(5)=5(5)3=22
    limx5(5x3)=22

    Conclusion

    f(x) is continuous at x=0,3,5


    Q2. Examine continuity of

    f(x)=2x21 at x=3

    Solution

    The function is defined at x=3:

    f(3)=2(3)21=2(9)1=17

    Now find the limit:

    limx3f(x)=limx3(2x21)=2(3)21=17

    Since

    limx3f(x)=f(3)

    Therefore, the function is continuous at x=3.


    Q3. Examine the following functions for continuity

    (a) f(x)=x5

    Polynomial ⇒ continuous everywhere.

    limxc(x5)=c5=f(c)

    Continuous for all real x


    (b) f(x)=1x5,  x5

    The function is undefined at x=5, so its domain excludes 5.
    Every rational function is continuous in its domain (Example 16)

    Continuous for all x5
    Discontinuous at x=5


    (c)

    f(x)=x225x+5,  x5

    Factor numerator:

    x225=(x5)(x+5)

    Thus,

    f(x)=x5,  x5

    This becomes a linear function, but x=5 is excluded from the domain.

    Continuous for x5
    Discontinuous at x=5


    (d) f(x)=x5

    Modulus function is continuous everywhere (Example 7)

     Continuous for all real x


    Q4. Prove that

    f(x)=xn is continuous at x=n

    (where n is a positive integer)

    Solution

    f(n)=nn
    limxnxn=nn

    Thus

    limxnf(x)=f(n)

    So the function is continuous at x=n


    Q5. Function

    f(x)={x,x15,x>1

    Check continuity at x=0, x=1, x=2

    At x=0

    f(0)=0

    Nearby values belong to x1:

    limx0f(x)=limx0x=0=f(0)

    Continuous at 0

    At x=1

    Left-hand limit:

    limx1f(x)=1

    Right-hand limit:

    limx1+f(x)=5

    f(1)=1

    Since

    LHL=1,RHL=5,LHLRHL

    Discontinuous at x=1

    At x=2

    f(2)=5,limx2f(x)=5

    Continuous at x=2

    Point of discontinuity

    x=1

    Find all points of discontinuity of f, where f is defined by

    Q6. The function is:

    f(x)={2x+3,x22x3,x>2

    We must examine continuity at x=2.


    Step 1: Check if the function is defined at x=2

    Since x=2 satisfies x2, we use the first expression:

    f(2)=2(2)+3=4+3=7

    So,f(2)=7

    Thus, the function is defined at x=2.


    Step 2: Left-Hand Limit (LHL) at x=2

    limx2f(x)=limx2(2x+3)
    =2(2)+3=4+3=7

    So,

    LHL=7


    Step 3: Right-Hand Limit (RHL) at x=2

    limx2+f(x)=limx2+(2x3)
    =2(2)3=43=1

    So,

    RHL=1


    Step 4: Compare limits and value at the point

    Quantity Value
    Left-hand limit (LHL) 7
    Right-hand limit (RHL) 1
    Actual value f(2) 7

    Condition for continuity

    f(x) is continuous at x=a if limxaf(x)=f(a)

    Since

    LHLRHLLimit does not exist at x=2

    So, the function cannot be continuous at that point.

    FINAL ANSWER

    f(x) is discontinuous at x=2.


    Question 7 

    The function is defined as:

    f(x)={x+3,x32x,3<x<36x+2,x3

    We must check continuity at the points where the definition changes, i.e.,

    x=3andx=3


    Check Continuity at x=3

    Step 1: Find f(3)

    Since 33, use x+3:

    f(3)=3+3=3+3=6

    Step 2: Left-hand limit (LHL) at x=3

    For x<3, expression is x+3

    limx3(x+3)=3+3=3+3=6

    Step 3: Right-hand limit (RHL) at x=3

    For 3<x<3, expression is 2x

    limx3+(2x)=2(3)=6

    Compare values

    Quantity Value
    LHL 6
    RHL 6
    f(3) 6

    Since LHL=RHL=f(3),f(x) is continuous at x=3


    Check Continuity at x=3

    Step 1: Find f(3)

    Since x3, use 6x+2:

    f(3)=6(3)+2=18+2=20

    Step 2: Left-hand limit (LHL)

    For x<3 and x>3, use 2x

    limx3(2x)=2(3)=6

    Step 3: Right-hand limit (RHL)

    limx3+(6x+2)=6(3)+2=20

    Compare values

    Quantity Value
    LHL -6
    RHL 20
    f(3) 20

    Since

    LHLRHL
    f(x) is NOT continuous at x=3


    Question 8 

    The function is defined as:

    f(x)={xx,x00,x=0

    We need to check continuity at x=0 because that is the only point where the definition changes.

    Step 1: Find f(0)

    Given directly:

    f(0)=0

    Step 2: Find Left-Hand Limit (LHL) as x0

    When x<0, x=x

    So,

    f(x)=xx=xx=1

    Thus,

    limx0xx=1

    Step 3: Find Right-Hand Limit (RHL) as x0+

    When x>0, x=x

    So,

    f(x)=xx=xx=1

    Thus,

    limx0+xx=1


    Step 4: Compare values

    Quantity Value
    Left-hand limit −1
    Right-hand limit 1
    f(0) 0

    Condition for Continuity:

    Function is continuous at x=a if LHL=RHL=f(a)

    But here:

    LHL=1RHL=1

    Therefore:

    limx0f(x) does not existSo,

    f(x) is NOT continuous at x=0


    Question 9

    The given function is:

    f(x)={xx,x<01,x0

    We must examine continuity at x=0, because that is the point where the rule changes.

    Step 1: Find f(0)

    Since 00, use the second part of the definition:

    f(0)=1


    Step 2: Find Left-Hand Limit (LHL) as x0

    For x<0, the expression is:

    f(x)=xx

    When x<0, x=x, so:

    xx=xx=1

    Thus:

    limx0f(x)=1


    Step 3: Find Right-Hand Limit (RHL) as x0+

    For x>0, use second part of definition (since all x0 map to f(x)=1:

    f(x)=1

    Thus:

    limx0+f(x)=1


    Step 4: Compare values

    Quantity Value
    LHL −1
    RHL −1
    Actual value f(0) −1

    So,

    LHL=RHL=f(0)


    Final Conclusion

    The function is continuous at x=0


    FINAL ANSWER

    f(x) is continuous everywhere, including at x=0.


    Question 10

    The function is:f(x)={x+1,x1x2+1,x<1

    We need to examine continuity at x=1, because that is the point where the definition switches.

    Step 1: Check whether f(x) is defined at x=1

    Since 11, use first expression:

    f(1)=1+1=2

    So, the function is defined at x=1, and f(1)=2


    Step 2: Find the Left-Hand Limit (LHL) as x1

    For values less than 1, use x2+1:

    limx1f(x)=limx1(x2+1)=12+1=2

    So,

    LHL=2


    Step 3: Find the Right-Hand Limit (RHL) as x1+

    For values greater than or equal to 1, use x+1:

    limx1+f(x)=limx1+(x+1)=1+1=2

    So,

    RHL=2

    Step 4: Compare LHL, RHL and f(1)

    Quantity Value
    LHL 2
    RHL 2
    f(1) 2

    Since

    LHL=RHL=f(1)

    FINAL CONCLUSION

    The function is continuous at x=1.

    Final Answer

    f(x) is continuous at x=1


    Question 11

    The given function is:f(x)={x33,x2x2+1,x>2

    We must check continuity at x=2, because that is where the definition changes.

    Step 1: Check if the function is defined at x=2

    Since 22, we use the first expression:

    f(2)=233=83=5

    So,

    f(2)=5

    The function is defined at x=2.


    Step 2: Left-Hand Limit (LHL) as x2

    For x<2, use x33:

    limx2f(x)=limx2(x33)=233=83=5

    So,

    LHL=5


    Step 3: Right-Hand Limit (RHL) as x2+

    For x>2, use x2+1:

    limx2+f(x)=limx2+(x2+1)=22+1=4+1=5

    So,RHL=5


    Step 4: Compare Limits and Function Value

    Quantity Value
    LHL 5
    RHL 5
    f(2) 5

    Condition for continuity:

    f(x) is continuous at x=a if LHL=RHL=f(a)

    Here:

    LHL=RHL=f(2)

    FINAL CONCLUSION

    f(x) is continuous at x=2

    FINAL ANSWER

    The function f(x) is continuous at x=2.

    Question 12 

    The function is:

    f(x)={x101,x1x2,x>1

    We need to examine continuity at x=1 (the point where the definition changes).

    Step 1: Check whether the function is defined at x=1

    Since 11, we use the first expression x101:

    f(1)=1101=11=0

    So,f(1)=0

    Step 2: Left-Hand Limit (LHL) at x=1

    For values x<1, use x101

    limx1f(x)=limx1(x101)=1101=0

    So:

    LHL=0

    Step 3: Right-Hand Limit (RHL) at x=1

    For values x>1, use x2

    limx1+f(x)=limx1+(x2)=12=1

    So:

    RHL=1

    Step 4: Compare values

    Quantity Value
    LHL 0
    RHL 1
    f(1) 0

    Condition for continuity

    Function is continuous at x=a if LHL=RHL=f(a)

    But here:

    LHL=01=RHL

    So the limit does not exist at x=1


    FINAL CONCLUSION

    f(x) is NOT continuous at x=1
    The function is discontinuous at x=1