Exercise-5.1, Class 12th, Maths, Chapter 5, NCERT

Question 1 to 12:


Q1. Prove that the function

f(x)=5x3

is continuous at x=0, x=3 and x=5.

Solution

The function f(x)=5x3 is a polynomial function.
We know from theory that every polynomial function is continuous at every real number.  

To verify at specific points:

At x=0

f(0)=5(0)3=3
limx0f(x)=limx0(5x3)=5(0)3=3

Since

limx0f(x)=f(0)f(x) is continuous at x=0

At x=3

f(3)=5(3)3=18
limx3(5x3)=5(3)3=18

Thus

limx3f(x)=f(3)

At x=5

f(5)=5(5)3=22
limx5(5x3)=22

Conclusion

f(x) is continuous at x=0,3,5


Q2. Examine continuity of

f(x)=2x21 at x=3

Solution

The function is defined at x=3:

f(3)=2(3)21=2(9)1=17

Now find the limit:

limx3f(x)=limx3(2x21)=2(3)21=17

Since

limx3f(x)=f(3)

Therefore, the function is continuous at x=3.


Q3. Examine the following functions for continuity

(a) f(x)=x5

Polynomial ⇒ continuous everywhere.

limxc(x5)=c5=f(c)

Continuous for all real x


(b) f(x)=1x5,  x5

The function is undefined at x=5, so its domain excludes 5.
Every rational function is continuous in its domain (Example 16)

Continuous for all x5
Discontinuous at x=5


(c)

f(x)=x225x+5,  x5

Factor numerator:

x225=(x5)(x+5)

Thus,

f(x)=x5,  x5

This becomes a linear function, but x=5 is excluded from the domain.

Continuous for x5
Discontinuous at x=5


(d) f(x)=x5

Modulus function is continuous everywhere (Example 7)

 Continuous for all real x


Q4. Prove that

f(x)=xn is continuous at x=n

(where n is a positive integer)

Solution

f(n)=nn
limxnxn=nn

Thus

limxnf(x)=f(n)

So the function is continuous at x=n


Q5. Function

f(x)={x,x15,x>1

Check continuity at x=0, x=1, x=2

At x=0

f(0)=0

Nearby values belong to x1:

limx0f(x)=limx0x=0=f(0)

Continuous at 0

At x=1

Left-hand limit:

limx1f(x)=1

Right-hand limit:

limx1+f(x)=5

f(1)=1

Since

LHL=1,RHL=5,LHLRHL

Discontinuous at x=1

At x=2

f(2)=5,limx2f(x)=5

Continuous at x=2

Point of discontinuity

x=1

Find all points of discontinuity of f, where f is defined by

Q6. The function is:

f(x)={2x+3,x22x3,x>2

We must examine continuity at x=2.


Step 1: Check if the function is defined at x=2

Since x=2 satisfies x2, we use the first expression:

f(2)=2(2)+3=4+3=7

So,f(2)=7

Thus, the function is defined at x=2.


Step 2: Left-Hand Limit (LHL) at x=2

limx2f(x)=limx2(2x+3)
=2(2)+3=4+3=7

So,

LHL=7


Step 3: Right-Hand Limit (RHL) at x=2

limx2+f(x)=limx2+(2x3)
=2(2)3=43=1

So,

RHL=1


Step 4: Compare limits and value at the point

Quantity Value
Left-hand limit (LHL) 7
Right-hand limit (RHL) 1
Actual value f(2) 7

Condition for continuity

f(x) is continuous at x=a if limxaf(x)=f(a)

Since

LHLRHLLimit does not exist at x=2

So, the function cannot be continuous at that point.

FINAL ANSWER

f(x) is discontinuous at x=2.


Question 7 

The function is defined as:

f(x)={x+3,x32x,3<x<36x+2,x3

We must check continuity at the points where the definition changes, i.e.,

x=3andx=3


Check Continuity at x=3

Step 1: Find f(3)

Since 33, use x+3:

f(3)=3+3=3+3=6

Step 2: Left-hand limit (LHL) at x=3

For x<3, expression is x+3

limx3(x+3)=3+3=3+3=6

Step 3: Right-hand limit (RHL) at x=3

For 3<x<3, expression is 2x

limx3+(2x)=2(3)=6

Compare values

Quantity Value
LHL 6
RHL 6
f(3) 6

Since LHL=RHL=f(3),f(x) is continuous at x=3


Check Continuity at x=3

Step 1: Find f(3)

Since x3, use 6x+2:

f(3)=6(3)+2=18+2=20

Step 2: Left-hand limit (LHL)

For x<3 and x>3, use 2x

limx3(2x)=2(3)=6

Step 3: Right-hand limit (RHL)

limx3+(6x+2)=6(3)+2=20

Compare values

Quantity Value
LHL -6
RHL 20
f(3) 20

Since

LHLRHL
f(x) is NOT continuous at x=3


Question 8 

The function is defined as:

f(x)={xx,x00,x=0

We need to check continuity at x=0 because that is the only point where the definition changes.

Step 1: Find f(0)

Given directly:

f(0)=0

Step 2: Find Left-Hand Limit (LHL) as x0

When x<0, x=x

So,

f(x)=xx=xx=1

Thus,

limx0xx=1

Step 3: Find Right-Hand Limit (RHL) as x0+

When x>0, x=x

So,

f(x)=xx=xx=1

Thus,

limx0+xx=1


Step 4: Compare values

Quantity Value
Left-hand limit −1
Right-hand limit 1
f(0) 0

Condition for Continuity:

Function is continuous at x=a if LHL=RHL=f(a)

But here:

LHL=1RHL=1

Therefore:

limx0f(x) does not existSo,

f(x) is NOT continuous at x=0


Question 9

The given function is:

f(x)={xx,x<01,x0

We must examine continuity at x=0, because that is the point where the rule changes.

Step 1: Find f(0)

Since 00, use the second part of the definition:

f(0)=1


Step 2: Find Left-Hand Limit (LHL) as x0

For x<0, the expression is:

f(x)=xx

When x<0, x=x, so:

xx=xx=1

Thus:

limx0f(x)=1


Step 3: Find Right-Hand Limit (RHL) as x0+

For x>0, use second part of definition (since all x0 map to f(x)=1:

f(x)=1

Thus:

limx0+f(x)=1


Step 4: Compare values

Quantity Value
LHL −1
RHL −1
Actual value f(0) −1

So,

LHL=RHL=f(0)


Final Conclusion

The function is continuous at x=0


FINAL ANSWER

f(x) is continuous everywhere, including at x=0.


Question 10

The function is:f(x)={x+1,x1x2+1,x<1

We need to examine continuity at x=1, because that is the point where the definition switches.

Step 1: Check whether f(x) is defined at x=1

Since 11, use first expression:

f(1)=1+1=2

So, the function is defined at x=1, and f(1)=2


Step 2: Find the Left-Hand Limit (LHL) as x1

For values less than 1, use x2+1:

limx1f(x)=limx1(x2+1)=12+1=2

So,

LHL=2


Step 3: Find the Right-Hand Limit (RHL) as x1+

For values greater than or equal to 1, use x+1:

limx1+f(x)=limx1+(x+1)=1+1=2

So,

RHL=2

Step 4: Compare LHL, RHL and f(1)

Quantity Value
LHL 2
RHL 2
f(1) 2

Since

LHL=RHL=f(1)

FINAL CONCLUSION

The function is continuous at x=1.

Final Answer

f(x) is continuous at x=1


Question 11

The given function is:f(x)={x33,x2x2+1,x>2

We must check continuity at x=2, because that is where the definition changes.

Step 1: Check if the function is defined at x=2

Since 22, we use the first expression:

f(2)=233=83=5

So,

f(2)=5

The function is defined at x=2.


Step 2: Left-Hand Limit (LHL) as x2

For x<2, use x33:

limx2f(x)=limx2(x33)=233=83=5

So,

LHL=5


Step 3: Right-Hand Limit (RHL) as x2+

For x>2, use x2+1:

limx2+f(x)=limx2+(x2+1)=22+1=4+1=5

So,RHL=5


Step 4: Compare Limits and Function Value

Quantity Value
LHL 5
RHL 5
f(2) 5

Condition for continuity:

f(x) is continuous at x=a if LHL=RHL=f(a)

Here:

LHL=RHL=f(2)

FINAL CONCLUSION

f(x) is continuous at x=2

FINAL ANSWER

The function f(x) is continuous at x=2.

Question 12 

The function is:

f(x)={x101,x1x2,x>1

We need to examine continuity at x=1 (the point where the definition changes).

Step 1: Check whether the function is defined at x=1

Since 11, we use the first expression x101:

f(1)=1101=11=0

So,f(1)=0

Step 2: Left-Hand Limit (LHL) at x=1

For values x<1, use x101

limx1f(x)=limx1(x101)=1101=0

So:

LHL=0

Step 3: Right-Hand Limit (RHL) at x=1

For values x>1, use x2

limx1+f(x)=limx1+(x2)=12=1

So:

RHL=1

Step 4: Compare values

Quantity Value
LHL 0
RHL 1
f(1) 0

Condition for continuity

Function is continuous at x=a if LHL=RHL=f(a)

But here:

LHL=01=RHL

So the limit does not exist at x=1


FINAL CONCLUSION

f(x) is NOT continuous at x=1
The function is discontinuous at x=1

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.