Tag: Class 12th Maths Exercise 5.2 Solutions

  • Exercise-5.2, Class 12th, Maths, Chapter 5, NCERT

    Differentiate the functions with respect to x in Exercises 1 to 8.

    1. Differentiate: sin(x2+5) with respect to x.


    Solution

    We need to differentiate the function:

    y=sin(x2+5)

    This is a composite function, so we will apply the Chain Rule

    Let:

    u=x2+5y=sin(u)

    Differentiate both:

    dydu=cos(u)dudx=2x

    Now apply Chain Rule:

    dydx=dydududx
    dydx=cos(u)2x

    Substitute u=x2+5:

    dydx=2xcos(x2+5)


    Question 2

    Differentiate with respect to x:

    cos(sinx)

    Solution

    Given:

    y=cos(sinx)

    This is a composite function, where:

    u=sinxy=cos(u)

    Now differentiate step-by-step:

    Step 1: Differentiate outer function

    dydu=sin(u)

    Step 2: Differentiate inner function

    dudx=cosx

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=(sin(u))cosx

    Substitute back u=sinx:

    dydx=sin(sinx)cosx


    Question 3

    Differentiate with respect to x:

    sin(ax+b)

    Solution

    Let:

    y=sin(ax+b)

    This is again a composite function, so we apply the Chain Rule.

    Step 1:

    Let the inner function:

    u=ax+b

    Then,

    y=sin(u)

    Step 2: Differentiate

    dydu=cos(u)
    dudx=a

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=cos(u)a

    Substitute u=ax+b:

    dydx=acos(ax+b)


    Question 4

    Differentiate with respect to x:

    ddx[sec(tan(x))

    Solution

    Let:

    u=tan(x)

    y=sec(u)

    Differentiate outer function

    dydu=sec(u)tan(u)

    Differentiate inner function

    u=tan(v),where v=x

    dudv=sec2(v)

    Differentiate 

    v=x
    dvdx=12x

    Apply Chain Rule

    dydx=dydududvdvdx
    dydx=sec(u)tan(u)sec2(v)12x

    Substitute u=tan(x), v=x:

    Final Answer

    ddx[sec(tan(x))]=12x  sec(tan(x))  tan(tan(x))  sec2(x)


    Question 5

    Differentiate with respect to x:

    sin(ax+b)cos(cx+d)Solution

    Let:y=sin(ax+b)cos(cx+d)

    This is a quotient, so we use the Quotient Rule:

    dydx=vdudxudvdxv2

    where

    u=sin(ax+b),v=cos(cx+d)

    Step 1: Differentiate u

    dudx=cos(ax+b)a

    Step 2: Differentiate v

    dvdx=sin(cx+d)c

    Step 3: Apply Quotient Rule

    dydx=cos(cx+d)(acos(ax+b))sin(ax+b)(csin(cx+d))cos2(cx+d)

    Simplify the numerator:

    =acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)

    Final Answer

    ddx(sin(ax+b)cos(cx+d))=acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)


    Question 6

    Differentiate with respect to x:

    cos(x3)sin2(x5)

    Solution

    The given function is a product, so we apply the Product Rule:

    ddx(uv)=uv+uv

    Let:

    u=cos(x3)
    v=sin2(x5)

    Step 1: Differentiate u=cos(x3)

    Using chain rule:

    u=sin(x3)3x2

    u=3x2sin(x3)

    Step 2: Differentiate v=sin2(x5)

    Rewrite:

    v=(sin(x5))2

    Let t=sin(x5), then v=t2

    dvdt=2t=2sin(x5)

    dtdx=cos(x5)5x4

    So,

    v=2sin(x5)5x4cos(x5)
    v=10x4sin(x5)cos(x5)

    Step 3: Apply Product Rule

    dydx=uv+uv

    Substitute:

    dydx=(3x2sin(x3))sin2(x5)+cos(x3)10x4sin(x5)cos(x5)

    Final Answer

    ddx[cos(x3)sin2(x5)]=3x2sin(x3)sin2(x5)+10x4cos(x3)sin(x5)cos(x5)


    Let’s differentiate step by step.


    Question 7

    y=2cot(x2)

    Rewrite using exponent form:

    y=2(cot(x2))1/2Solution

    Let:

    u=cot(x2)
    y=2u1/2

    Step 1: Differentiate outer function

    dydu=212u1/2=u1/2

    Step 2: Differentiate inner function

    u=cot(x2)

    Derivative of cott is csc2t

    So, by chain rule:

    dudx=csc2(x2)2x

    Apply Chain Rule

    dydx=dydududx

    dydx=u1/2(2xcsc2(x2))

    Substitute back u=cot(x2):

    dydx=2xcsc2(x2)(cot(x2))1/2

    Rewrite using square root:

    dydx=2xcsc2(x2)cot(x2)

    Final Answer

    ddx[2cot(x2)]=2xcsc2(x2)cot(x2)


    Question 8

    Differentiate with respect to x:

    cos(x)Solution

    Let:y=cos(x)

    This is a composite function, so we will apply the Chain Rule.

    Step 1: Identify inner and outer functions

    u=x=x1/2
    y=cos(u)

    Step 2: Differentiate each part

    dydu=sin(u)

    dudx=12x

    Step 3: Apply Chain Rule

    dydx=dydududx
    dydx=(sin(u))12x

    Substitute u=x:

    Final Answer

    ddx[cos(x)]=sin(x)2x


    Question 9

    Prove that the function

    f(x)=x1,  xR

    is not differentiable at x=1.

    Solution

    First, write the function in piecewise form:

    f(x)={1x,if x<1x1,if x>1

    Also,

    f(1)=11=0

    To check differentiability at x=1, evaluate the left-hand derivative and the right-hand derivative.

    Left-hand derivative (LHD) at x=1

    For x<1, f(x)=1x

    ddx(1x)=1So,

    LHD at x=1=limh0f(1+h)f(1)h=1

    Right-hand derivative (RHD) at x=1

    For x>1, f(x)=x1

    ddx(x1)=1

    So,

    RHD at x=1=limh0+f(1+h)f(1)h=1

    Conclusion

    LHD=1,RHD=1

    Since:LHDRHD

      f(x)=x1 is not differentiable at x=1.

    Reason

    The graph of x1 has a sharp corner (cusp) at x=1, which makes the slope undefined there.


    Question 10

    Prove that the greatest integer function defined by

    f(x)=[x],0<x<3

    is not differentiable at x=1 and x=2.

    Solution:

    Understanding the function

    The function [x] defines the greatest integer less than or equal to x.

    For 0<x<3, the function behaves as follows:

    f(x)={0,0<x<11,1<x<22,2<x<3

    Continuity & Differentiability at x=1

    Left-hand limit approaching 1:

    For x<1, f(x)=0

    limx1f(x)=0

    Right-hand limit approaching 1:

    For x>1, f(x)=1

    limx1+f(x)=1

    Since

    limx1f(x)limx1+f(x),
    f(x) is discontinuous at x=1.Differentiability result

    A function must be continuous at a point to be differentiable there.

    Since f(x) is not continuous at x=1, it cannot be differentiable at x=1.

    f(x) is not differentiable at x=1.

    Similarly at x=2

    Left-hand limit approaching 2

    For x<2, f(x)=1

    limx2f(x)=1

    Right-hand limit approaching 2

    For x>2, f(x)=2

    limx2+f(x)=2

    Since

    limx2f(x)limx2+f(x),
    f(x) is discontinuous at x=2.Thus,

    f(x) is not differentiable at x=2.