Exercise-5.2, Class 12th, Maths, Chapter 5, NCERT

Differentiate the functions with respect to x in Exercises 1 to 8.

1. Differentiate: sin(x2+5) with respect to x.


Solution

We need to differentiate the function:

y=sin(x2+5)

This is a composite function, so we will apply the Chain Rule

Let:

u=x2+5y=sin(u)

Differentiate both:

dydu=cos(u)dudx=2x

Now apply Chain Rule:

dydx=dydududx
dydx=cos(u)2x

Substitute u=x2+5:

dydx=2xcos(x2+5)


Question 2

Differentiate with respect to x:

cos(sinx)

Solution

Given:

y=cos(sinx)

This is a composite function, where:

u=sinxy=cos(u)

Now differentiate step-by-step:

Step 1: Differentiate outer function

dydu=sin(u)

Step 2: Differentiate inner function

dudx=cosx

Step 3: Apply Chain Rule

dydx=dydududx
dydx=(sin(u))cosx

Substitute back u=sinx:

dydx=sin(sinx)cosx


Question 3

Differentiate with respect to x:

sin(ax+b)

Solution

Let:

y=sin(ax+b)

This is again a composite function, so we apply the Chain Rule.

Step 1:

Let the inner function:

u=ax+b

Then,

y=sin(u)

Step 2: Differentiate

dydu=cos(u)
dudx=a

Step 3: Apply Chain Rule

dydx=dydududx
dydx=cos(u)a

Substitute u=ax+b:

dydx=acos(ax+b)


Question 4

Differentiate with respect to x:

ddx[sec(tan(x))

Solution

Let:

u=tan(x)

y=sec(u)

Differentiate outer function

dydu=sec(u)tan(u)

Differentiate inner function

u=tan(v),where v=x

dudv=sec2(v)

Differentiate 

v=x
dvdx=12x

Apply Chain Rule

dydx=dydududvdvdx
dydx=sec(u)tan(u)sec2(v)12x

Substitute u=tan(x), v=x:

Final Answer

ddx[sec(tan(x))]=12x  sec(tan(x))  tan(tan(x))  sec2(x)


Question 5

Differentiate with respect to x:

sin(ax+b)cos(cx+d)Solution

Let:y=sin(ax+b)cos(cx+d)

This is a quotient, so we use the Quotient Rule:

dydx=vdudxudvdxv2

where

u=sin(ax+b),v=cos(cx+d)

Step 1: Differentiate u

dudx=cos(ax+b)a

Step 2: Differentiate v

dvdx=sin(cx+d)c

Step 3: Apply Quotient Rule

dydx=cos(cx+d)(acos(ax+b))sin(ax+b)(csin(cx+d))cos2(cx+d)

Simplify the numerator:

=acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)

Final Answer

ddx(sin(ax+b)cos(cx+d))=acos(ax+b)cos(cx+d)+csin(ax+b)sin(cx+d)cos2(cx+d)


Question 6

Differentiate with respect to x:

cos(x3)sin2(x5)

Solution

The given function is a product, so we apply the Product Rule:

ddx(uv)=uv+uv

Let:

u=cos(x3)
v=sin2(x5)

Step 1: Differentiate u=cos(x3)

Using chain rule:

u=sin(x3)3x2

u=3x2sin(x3)

Step 2: Differentiate v=sin2(x5)

Rewrite:

v=(sin(x5))2

Let t=sin(x5), then v=t2

dvdt=2t=2sin(x5)

dtdx=cos(x5)5x4

So,

v=2sin(x5)5x4cos(x5)
v=10x4sin(x5)cos(x5)

Step 3: Apply Product Rule

dydx=uv+uv

Substitute:

dydx=(3x2sin(x3))sin2(x5)+cos(x3)10x4sin(x5)cos(x5)

Final Answer

ddx[cos(x3)sin2(x5)]=3x2sin(x3)sin2(x5)+10x4cos(x3)sin(x5)cos(x5)


Let’s differentiate step by step.


Question 7

y=2cot(x2)

Rewrite using exponent form:

y=2(cot(x2))1/2Solution

Let:

u=cot(x2)
y=2u1/2

Step 1: Differentiate outer function

dydu=212u1/2=u1/2

Step 2: Differentiate inner function

u=cot(x2)

Derivative of cott is csc2t

So, by chain rule:

dudx=csc2(x2)2x

Apply Chain Rule

dydx=dydududx

dydx=u1/2(2xcsc2(x2))

Substitute back u=cot(x2):

dydx=2xcsc2(x2)(cot(x2))1/2

Rewrite using square root:

dydx=2xcsc2(x2)cot(x2)

Final Answer

ddx[2cot(x2)]=2xcsc2(x2)cot(x2)


Question 8

Differentiate with respect to x:

cos(x)Solution

Let:y=cos(x)

This is a composite function, so we will apply the Chain Rule.

Step 1: Identify inner and outer functions

u=x=x1/2
y=cos(u)

Step 2: Differentiate each part

dydu=sin(u)

dudx=12x

Step 3: Apply Chain Rule

dydx=dydududx
dydx=(sin(u))12x

Substitute u=x:

Final Answer

ddx[cos(x)]=sin(x)2x


Question 9

Prove that the function

f(x)=x1,  xR

is not differentiable at x=1.

Solution

First, write the function in piecewise form:

f(x)={1x,if x<1x1,if x>1

Also,

f(1)=11=0

To check differentiability at x=1, evaluate the left-hand derivative and the right-hand derivative.

Left-hand derivative (LHD) at x=1

For x<1, f(x)=1x

ddx(1x)=1So,

LHD at x=1=limh0f(1+h)f(1)h=1

Right-hand derivative (RHD) at x=1

For x>1, f(x)=x1

ddx(x1)=1

So,

RHD at x=1=limh0+f(1+h)f(1)h=1

Conclusion

LHD=1,RHD=1

Since:LHDRHD

  f(x)=x1 is not differentiable at x=1.

Reason

The graph of x1 has a sharp corner (cusp) at x=1, which makes the slope undefined there.


Question 10

Prove that the greatest integer function defined by

f(x)=[x],0<x<3

is not differentiable at x=1 and x=2.

Solution:

Understanding the function

The function [x] defines the greatest integer less than or equal to x.

For 0<x<3, the function behaves as follows:

f(x)={0,0<x<11,1<x<22,2<x<3

Continuity & Differentiability at x=1

Left-hand limit approaching 1:

For x<1, f(x)=0

limx1f(x)=0

Right-hand limit approaching 1:

For x>1, f(x)=1

limx1+f(x)=1

Since

limx1f(x)limx1+f(x),
f(x) is discontinuous at x=1.Differentiability result

A function must be continuous at a point to be differentiable there.

Since f(x) is not continuous at x=1, it cannot be differentiable at x=1.

f(x) is not differentiable at x=1.

Similarly at x=2

Left-hand limit approaching 2

For x<2, f(x)=1

limx2f(x)=1

Right-hand limit approaching 2

For x>2, f(x)=2

limx2+f(x)=2

Since

limx2f(x)limx2+f(x),
f(x) is discontinuous at x=2.Thus,

f(x) is not differentiable at x=2.


👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.