Tag: Exercise 10.1 Chapter 10 Herone’s law Class 9th Maths Solutions

  • Exercise-10.1, Class 9th, Maths, Chapter 10, NCERT

    Heron’s formula throughout:

    Heron’s formula: for sides a,b,c and s=a+b+c2

    Area=s(sa)(sb)(sc).


    1. Equilateral triangle with side a.

    For an equilateral triangle a=b=c
    s=3a2. So

    Area=3a2(3a2a)3=3a2(a2)3=34a2

    If perimeter =180, each side =180/3=60cm.
    Area =34×602=  9003 cm21558.849 cm2


    2. Triangle with sides 122 m, 22 m, 120 m. Rent at ₹5000 per m2 per year; hired for 3 months.

    Compute s=122+22+1202=2642=132

    s122=10,  s22=110,  s120=12

    Area =1321011012

    Note 13210=1320 and 11012=1320, product =13202.

    So area =1320 m2

    Annual earnings per months = 312=1year.

    Rent =1320×5000×14=1320×1250=1,650,000


    3. Triangle with sides 15 m, 11 m, 6 m

    s=15+11+62=322=16
    s15=1,  s11=5,  s6=10

    Area =161510=800=202 m228.284 m2


    4. Triangle with two sides 18 cm and 10 cm, perimeter 42 cm.

    Third side =42(18+10)=14 cm. So sides 18,10,14

    s=18+10+142=422=21
    s18=3,  s10=11,  s14=7

    Area =213117=4851=2111 cm269.649 cm2


    5. Sides in ratio 12:17:25, perimeter 540 cm.

    Sum of ratios =12+17+25=54. So scale x=540/54=10.

    Sides =120, 170, 250

    s=120+170+2502=5402=270
    s120=150,  s170=100,  s250=20

    Area =27015010020
    Compute 270150=40500,  10020=2000, product =40500×2000=81,000,000
    81,000,000=9000

    So area =9000 cm2


    6. Isosceles triangle: perimeter 30 cm, equal sides =12 cm each.

    Base =302×12=3024=6

    Alternatively a=b=12, c=6

    s=12+12+62=15
    s12=3,  s12=3,  s6=9

    Area =15339=1215=915 cm234.857 cm2

    (Checks with height method: height =12232=135=315, area =12×6×315=915)