Exercise-10.1, Class 9th, Maths, Chapter 10, NCERT

Heron’s formula throughout:

Heron’s formula: for sides a,b,c and s=a+b+c2

Area=s(sa)(sb)(sc).


1. Equilateral triangle with side a.

For an equilateral triangle a=b=c
s=3a2. So

Area=3a2(3a2a)3=3a2(a2)3=34a2

If perimeter =180, each side =180/3=60cm.
Area =34×602=  9003 cm21558.849 cm2


2. Triangle with sides 122 m, 22 m, 120 m. Rent at ₹5000 per m2 per year; hired for 3 months.

Compute s=122+22+1202=2642=132

s122=10,  s22=110,  s120=12

Area =1321011012

Note 13210=1320 and 11012=1320, product =13202.

So area =1320 m2

Annual earnings per months = 312=1year.

Rent =1320×5000×14=1320×1250=1,650,000


3. Triangle with sides 15 m, 11 m, 6 m

s=15+11+62=322=16
s15=1,  s11=5,  s6=10

Area =161510=800=202 m228.284 m2


4. Triangle with two sides 18 cm and 10 cm, perimeter 42 cm.

Third side =42(18+10)=14 cm. So sides 18,10,14

s=18+10+142=422=21
s18=3,  s10=11,  s14=7

Area =213117=4851=2111 cm269.649 cm2


5. Sides in ratio 12:17:25, perimeter 540 cm.

Sum of ratios =12+17+25=54. So scale x=540/54=10.

Sides =120, 170, 250

s=120+170+2502=5402=270
s120=150,  s170=100,  s250=20

Area =27015010020
Compute 270150=40500,  10020=2000, product =40500×2000=81,000,000
81,000,000=9000

So area =9000 cm2


6. Isosceles triangle: perimeter 30 cm, equal sides =12 cm each.

Base =302×12=3024=6

Alternatively a=b=12, c=6

s=12+12+62=15
s12=3,  s12=3,  s6=9

Area =15339=1215=915 cm234.857 cm2

(Checks with height method: height =12232=135=315, area =12×6×315=915)

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.