Tag: Maths Class 10th NCERT Solutions

  • Exercise-8.3, Class 10th, Maths, Exercise 8, NCERT

    Q 1. Express sin θ, sec θ and tan θ in terms of cot θ.

    Let cotθ=c

    tanθ=1c,1+cot2θ=csc2θ.

    So,

    cscθ=1+c2sinθ=11+c2.

    Also,

    1+tan2θ=sec2θsecθ=1+tan2θ=1+1c2=1+c2c.
    sinθ=11+cot2θ,tanθ=1cotθ,secθ=1+cot2θcotθ.


    Q 2. Express all trigonometric ratios of θ in terms of sec θ.

    Let secθ=s

    Then cosθ=1s

    sinθ=1cos2θ=11s2=s21s

    Then:

    tanθ=sinθcosθ=s21,cotθ=1tanθ=1s21,cscθ=1sinθ=ss21.
    cosθ=1secθ,sinθ=sec2θ1secθ,tanθ=sec2θ1,cotθ=1sec2θ1,cscθ=secθsec2θ1.


    Q 3. Evaluate each expression (choose correct option).

    (i) 9sec2θ9tan2θ

    9(sec2θtan2θ)=9(1)=9.


    (ii) (1+tanθ+secθ)(1+cotθcscθ)

    =cosθ+sinθ+1cosθ×sinθ+cosθ1sinθ=(sinθ+cosθ)21sinθcosθ.
    (sinθ+cosθ)21=1+2sinθcosθ1=2sinθcosθ.
    2sinθcosθsinθcosθ=2.


    (iii) (secθ+tanθ)(1sinθ)

    =1+sinθcosθ(1sinθ)=1sin2θcosθ=cos2θcosθ=cosθ.


    (iv) 1+tan2θ1+cot2θ

    =sec2θcsc2θ=sin2θcos2θ=tan2θ.


    Q 4. Prove the following identities.


    (i) (cscθcotθ)2=1cosθ1+cosθ

    cscθcotθ=1cosθsinθ,(cscθcotθ)2=(1cosθ)2sin2θ.sin2θ=(1cosθ)(1+cosθ)(1cosθ)2(1cosθ)(1+cosθ)=1cosθ1+cosθ.
    LHS=RHS.


    (ii) (cscθ+cotθ)2=1+cosθ1cosθ

    cscθ+cotθ=1+cosθsinθ.(cscθ+cotθ)2=(1+cosθ)2sin2θ=(1+cosθ)2(1cosθ)(1+cosθ)=1+cosθ1cosθ.
    LHS=RHS.


    (iii) (secθ+tanθ)(secθtanθ)=1

    (secθ+tanθ)(secθtanθ)=sec2θtan2θ=1.


    (iv) (secθ+tanθ)(1sinθ)=cosθ

    secθ+tanθ=1+sinθcosθ

    (secθ+tanθ)(1sinθ)=1sin2θcosθ=cos2θcosθ=cosθ.


    (v) 1+sinθcosθ=secθ+tanθ

    1+sinθcosθ=1cosθ+sinθcosθ=secθ+tanθ.


    (vi) 1sinθcosθ=secθtanθ

    1sinθcosθ=1cosθsinθcosθ=secθtanθ.


    (vii) 1+tanθ1+cotθ=tanθ

    1+tanθ1+cotθ=1+tanθ1+1tanθ=1+tanθ1+tanθtanθ=tanθ.


    (viii) 1+sinθ1sinθ=(secθ+tanθ)2

    RHS:

    (secθ+tanθ)2=(1+sinθcosθ)2=(1+sinθ)2cos2θ=(1+sinθ)2(1sinθ)(1+sinθ)=1+sinθ1sinθ.
    LHS=RHS.


    (ix) sinθ+cosθ=2sin(θ+45°)

    sin(θ+45°)=sinθcos45°+cosθsin45°=sinθ+cosθ2.

    Multiply by √2:

    sinθ+cosθ=2sin(θ+45°).


    (x) sin4θ+cos4θ=112sin22θ

    sin4θ+cos4θ=(sin2θ+cos2θ)22sin2θcos2θ=12sin2θcos2θ.

    But sin2θ=2sinθcosθsin22θ=4sin2θcos2θ.2sin2θcos2θ=12sin22θ.sin4θ+cos4θ=112sin22θ.