Exercise-8.3, Class 10th, Maths, Exercise 8, NCERT

Q 1. Express sin θ, sec θ and tan θ in terms of cot θ.

Let cotθ=c

tanθ=1c,1+cot2θ=csc2θ.

So,

cscθ=1+c2sinθ=11+c2.

Also,

1+tan2θ=sec2θsecθ=1+tan2θ=1+1c2=1+c2c.
sinθ=11+cot2θ,tanθ=1cotθ,secθ=1+cot2θcotθ.


Q 2. Express all trigonometric ratios of θ in terms of sec θ.

Let secθ=s

Then cosθ=1s

sinθ=1cos2θ=11s2=s21s

Then:

tanθ=sinθcosθ=s21,cotθ=1tanθ=1s21,cscθ=1sinθ=ss21.
cosθ=1secθ,sinθ=sec2θ1secθ,tanθ=sec2θ1,cotθ=1sec2θ1,cscθ=secθsec2θ1.


Q 3. Evaluate each expression (choose correct option).

(i) 9sec2θ9tan2θ

9(sec2θtan2θ)=9(1)=9.


(ii) (1+tanθ+secθ)(1+cotθcscθ)

=cosθ+sinθ+1cosθ×sinθ+cosθ1sinθ=(sinθ+cosθ)21sinθcosθ.
(sinθ+cosθ)21=1+2sinθcosθ1=2sinθcosθ.
2sinθcosθsinθcosθ=2.


(iii) (secθ+tanθ)(1sinθ)

=1+sinθcosθ(1sinθ)=1sin2θcosθ=cos2θcosθ=cosθ.


(iv) 1+tan2θ1+cot2θ

=sec2θcsc2θ=sin2θcos2θ=tan2θ.


Q 4. Prove the following identities.


(i) (cscθcotθ)2=1cosθ1+cosθ

cscθcotθ=1cosθsinθ,(cscθcotθ)2=(1cosθ)2sin2θ.sin2θ=(1cosθ)(1+cosθ)(1cosθ)2(1cosθ)(1+cosθ)=1cosθ1+cosθ.
LHS=RHS.


(ii) (cscθ+cotθ)2=1+cosθ1cosθ

cscθ+cotθ=1+cosθsinθ.(cscθ+cotθ)2=(1+cosθ)2sin2θ=(1+cosθ)2(1cosθ)(1+cosθ)=1+cosθ1cosθ.
LHS=RHS.


(iii) (secθ+tanθ)(secθtanθ)=1

(secθ+tanθ)(secθtanθ)=sec2θtan2θ=1.


(iv) (secθ+tanθ)(1sinθ)=cosθ

secθ+tanθ=1+sinθcosθ

(secθ+tanθ)(1sinθ)=1sin2θcosθ=cos2θcosθ=cosθ.


(v) 1+sinθcosθ=secθ+tanθ

1+sinθcosθ=1cosθ+sinθcosθ=secθ+tanθ.


(vi) 1sinθcosθ=secθtanθ

1sinθcosθ=1cosθsinθcosθ=secθtanθ.


(vii) 1+tanθ1+cotθ=tanθ

1+tanθ1+cotθ=1+tanθ1+1tanθ=1+tanθ1+tanθtanθ=tanθ.


(viii) 1+sinθ1sinθ=(secθ+tanθ)2

RHS:

(secθ+tanθ)2=(1+sinθcosθ)2=(1+sinθ)2cos2θ=(1+sinθ)2(1sinθ)(1+sinθ)=1+sinθ1sinθ.
LHS=RHS.


(ix) sinθ+cosθ=2sin(θ+45°)

sin(θ+45°)=sinθcos45°+cosθsin45°=sinθ+cosθ2.

Multiply by √2:

sinθ+cosθ=2sin(θ+45°).


(x) sin4θ+cos4θ=112sin22θ

sin4θ+cos4θ=(sin2θ+cos2θ)22sin2θcos2θ=12sin2θcos2θ.

But sin2θ=2sinθcosθsin22θ=4sin2θcos2θ.2sin2θcos2θ=12sin22θ.sin4θ+cos4θ=112sin22θ.

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.