Tag: Miscellaneous Exercise on chapter 2 solution maths class 12th ncert

  • Miscellaneous Exercise on Chapter – 2, Class 12th, Maths, NCERT

    1. cos1(cos(13π/6))

    We know that cos1(cosθ)=θ if θ[0,π].

    13π/6=2π+π/6    cos(13π/6)=cos(π/6)

    Thus,

    cos1(cos(13π/6))=π/6


    2. tan1(tan(7π/6))

    tan1(tanθ)=θ if θ(π/2,π/2).

    7π/6=π+π/6    tan(7π/6)=tan(π/6)

    So,

    tan1(tan(7π/6))=π/6π=5π/6

    Since range is (π/2,π/2), principal value is π/6π=π/6


    3. Prove 2sin1(35)=tan1(247)

    Let sin135=θ, so sinθ=35.
    Then, cosθ=45

    tan(2θ)=2tanθ1tan2θ=2(34)1(34)2=247

    Hence,

    2sin1(35)=tan1(247)


    4. Prove sin1817+sin135=tan17736

    Let sin1817=α and sin135=β

    tanα=815,tanβ=34

    Thus,

    tan(α+β)=8/15+3/41(8/15)(3/4)=7736

    Hence proved.


    5. Prove cos145+cos11213=cos13365

    Let A=cos145,B=cos11213.

    cos(A+B)=cosAcosBsinAsinB
    =45121335513=3365

    Hence proved.


    6. cos11213+sin135=sin15665

    Let A=cos11213,B=sin135
    Then sinA=513,cosB=45

    sin(A+B)=sinAcosB+cosAsinB=51345+121335=5665

    Hence proved.


    7. tan16316=sin1513+cos135

    Let sin1513=A, cos135=Btan(A+B)=5/12+4/3151243=6316

    Hence proved.


    8. Prove tan11x1+x=12cos1x,x(0,1)

    Put x=cos2θ, then

    1x1+x=1cos2θ1+cos2θ=tanθ

    Thus,

    tan11x1+x=θ=12cos1x


    9. Prove cot11+sinx+1sinx1+sinx1sinx=x2Let t=tanx2, then:

    sinx=2t1+t2

    After rationalizing and simplifying, the expression equals cot1(1tan(x/2))=x2


    10. Prove tan11+x1x1+x+1x=π412cos1x

    Let x=cos2θ, then

    1+x1x1+x+1x=cosθsinθcosθ+sinθ=tan(π4θ)

    Hence,

    tan1(LHS)=π4θ=π412cos1x


    11. Solve 2tan1(cosx)=tan1(2cscx)

    Let tan1(cosx)=θ

    Then tan(2θ)=2tanθ1tan2θ=2cosx1cos2x=2cscx

    Hence proven.


    12. Prove tan11x1+x=π4tan1x

    Use the tangent subtraction identity:

    tan(π4tan1x)=1x1+x

    Taking tan1 both sides gives the result.


    13. sin(tan1x)=x1+x2

    Let tan1x=θtanθ=x

    So a right-angle triangle gives sinθ=x1+x2

    Hence,

    sin(tan1x)=x1+x2


    14. If sin1(12x2)=2sin1x

    Use double angle formula:

    sin(2sin1x)=2x1x2

    Equating 12x2=2x1x2 and solving gives x=0 or x=1.