Miscellaneous Exercise on Chapter – 2, Class 12th, Maths, NCERT

1. cos1(cos(13π/6))

We know that cos1(cosθ)=θ if θ[0,π].

13π/6=2π+π/6    cos(13π/6)=cos(π/6)

Thus,

cos1(cos(13π/6))=π/6


2. tan1(tan(7π/6))

tan1(tanθ)=θ if θ(π/2,π/2).

7π/6=π+π/6    tan(7π/6)=tan(π/6)

So,

tan1(tan(7π/6))=π/6π=5π/6

Since range is (π/2,π/2), principal value is π/6π=π/6


3. Prove 2sin1(35)=tan1(247)

Let sin135=θ, so sinθ=35.
Then, cosθ=45

tan(2θ)=2tanθ1tan2θ=2(34)1(34)2=247

Hence,

2sin1(35)=tan1(247)


4. Prove sin1817+sin135=tan17736

Let sin1817=α and sin135=β

tanα=815,tanβ=34

Thus,

tan(α+β)=8/15+3/41(8/15)(3/4)=7736

Hence proved.


5. Prove cos145+cos11213=cos13365

Let A=cos145,B=cos11213.

cos(A+B)=cosAcosBsinAsinB
=45121335513=3365

Hence proved.


6. cos11213+sin135=sin15665

Let A=cos11213,B=sin135
Then sinA=513,cosB=45

sin(A+B)=sinAcosB+cosAsinB=51345+121335=5665

Hence proved.


7. tan16316=sin1513+cos135

Let sin1513=A, cos135=Btan(A+B)=5/12+4/3151243=6316

Hence proved.


8. Prove tan11x1+x=12cos1x,x(0,1)

Put x=cos2θ, then

1x1+x=1cos2θ1+cos2θ=tanθ

Thus,

tan11x1+x=θ=12cos1x


9. Prove cot11+sinx+1sinx1+sinx1sinx=x2Let t=tanx2, then:

sinx=2t1+t2

After rationalizing and simplifying, the expression equals cot1(1tan(x/2))=x2


10. Prove tan11+x1x1+x+1x=π412cos1x

Let x=cos2θ, then

1+x1x1+x+1x=cosθsinθcosθ+sinθ=tan(π4θ)

Hence,

tan1(LHS)=π4θ=π412cos1x


11. Solve 2tan1(cosx)=tan1(2cscx)

Let tan1(cosx)=θ

Then tan(2θ)=2tanθ1tan2θ=2cosx1cos2x=2cscx

Hence proven.


12. Prove tan11x1+x=π4tan1x

Use the tangent subtraction identity:

tan(π4tan1x)=1x1+x

Taking tan1 both sides gives the result.


13. sin(tan1x)=x1+x2

Let tan1x=θtanθ=x

So a right-angle triangle gives sinθ=x1+x2

Hence,

sin(tan1x)=x1+x2


14. If sin1(12x2)=2sin1x

Use double angle formula:

sin(2sin1x)=2x1x2

Equating 12x2=2x1x2 and solving gives x=0 or x=1.

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.