Tag: Miscellaneous Exercise on Chapter 3 solution

  • Miscellaneous Exercise on Chapter 3, Class 12th, Maths, NCERT

    Question 1:

    If A and B are symmetric matrices, prove that ABBA is a skew-symmetric matrix.

    Answer (proof):

    Recall a matrix M is skew-symmetric if MT=M

    Given A and B are symmetric, so

    AT=A,BT=B.

    Consider the transpose of ABBA:

    (ABBA)T=(AB)T(BA)T=BTATATBT.

    Using symmetry of A and B we get

    (ABBA)T=BAAB=(ABBA).

    Thus (ABBA)T=(ABBA), so ABBA is skew-symmetric.

    (As a remark, every skew-symmetric matrix has zeros on its diagonal, so the diagonal entries of ABBA are all zero.)

    Question 2:

    Show that the matrix BAB is symmetric according as A is symmetric or skew-symmetric.


    Answer (proof):

    Let A and B be square matrices of the same order, and let B denote the transpose of B.
    We need to show that:

    • If A is symmetric, then BAB is symmetric.

    • If A is skew-symmetric, then BAB is skew-symmetric.


    Case 1: A is symmetric

    If A is symmetric, then A=A.

    Consider (BAB):

    (BAB)=BAB.

    But since A=A,

    (BAB)=BAB.

    Hence, BAB is symmetric.


    Case 2: A is skew-symmetric

    If A is skew-symmetric, then A=A.

    Now, take the transpose of BAB:

    (BAB)=BAB=B(A)B=BAB.

    Thus, (BAB)=BAB,
    which means BAB is skew-symmetric.

    Hence proved:
    The matrix BAB is symmetric or skew-symmetric according as A is symmetric or skew-symmetric.

    Question 3:

    Find the values of x,y,z if A=(02yzxyzxyz) satisfies ATA=I.


    Answer (solution):

    Compute ATA. A straightforward multiplication gives

    ATA=(2x20006y20003z2).

    For ATA=I we must have the diagonal entries equal to 1, hence

    2x2=1,6y2=1,3z2=1

    Therefore

    x2=12    x=±12,y2=16    y=±16,z2=13    z=±13.

    All choices of independent signs are allowed, so the solutions are

    (x,y,z)=(±12, ±16, ±13),

    (8 sign-combinations in total).

    Question 4:

    For what values of x does [1  2  1](120201102)(02x)=0 ?

    Answer (solution):

    First compute the product of the matrix with the column vector:

    (120201102)(02x)=(10+22+0x20+02+1x10+02+2x)=(4x2x)

    Now left-multiply by [1  2  1]:

    [1  2  1](4x2x)=14+2x+12x=4+4x

    Set equal to zero:

    4+4x=0x=1

    Question 5:

    If A=(3112), show that A25A+7I=0


    Answer (solution):

    Given

    A=(3112),I=(1001).

    Step 1: Compute A2

    A2=(3112)(3112)=(3(3)+1(1)3(1)+1(2)(1)(3)+2(1)(1)(1)+2(2))=(8553).

    Step 2: Compute 5A

    5A=5(3112)=(155510)

    Step 3: Compute 7I

    7I=7(1001)=(7007)

    Step 4: Substitute into A25A+7I

    A25A+7I=(8553)(155510)+(7007)

    Compute step-by-step:

    A25A=(815555(5)310)=(7007)

    Now add 7I:

    A25A+7I=(7007)+(7007)=(0000)

    Hence proved:

    A25A+7I=0

     

    Question 6:

    Find x if [x    5    1](102021203)(x41)=0.

    Solution:

    We will simplify step-by-step.

    Step 1: Multiply the matrix with the column vector

    (102021203)(x41)=(1x+04+210x+24+112x+04+31)=(x+292x+3)

    Step 2: Multiply the row vector [x  5  1] with the result

    [x  5  1](x+292x+3)=x(x+2)+(5)(9)+(1)(2x+3)

    Simplify:

    =x2+2x452x3=x248.

    Step 3: Set equal to zero

    x248=0x2=48

    x  =±43

    Question 7

    A manufacturer produces three products x,y,z sold in two markets with annual sales
    S=(100002000180006000200008000)(rows: Market I, Market II; columns: x,y,z).
    (a) Unit sale prices p=(2.501.501.00).(b) Unit costs c=(2.001.000.50).
    Find (a) total revenue in each market, (b) gross profit in each market.

    Solution

    Use matrix multiplication. Revenue vector R (marketwise) is

    R=Sp.

    Compute component-wise:

    Market I revenue

    10000(2.5)+2000(1.5)+18000(1)=25000+3000+18000=46000.

    Market II revenue

    6000(2.5)+20000(1.5)+8000(1)=15000+30000+8000=53000.

    So

    R=(4600053000) rupees.

    (b) Total cost vector C=Sc:

    Market I cost

    10000(2)+2000(1)+18000(0.5)=20000+2000+9000=31000.

    Market II cost

    6000(2)+20000(1)+8000(0.5)=12000+20000+4000=36000.

    So

    C=(3100036000) rupees.

    Gross profit for each market G=RC:

    G=(46000310005300036000)=(1500017000) rupeesFinal answers

    (a) Total revenue — Market I: Rs. 46,000; Market II: Rs. 53,000.
    (b) Gross profit — Market I: Rs. 15,000; Market II: Rs. 17,000.

    (Also note matrix forms: R=Sp,  C=Sc,  G=S(pc)

     

    Question 8:

    Find the matrix X such that X(123456)=(789246).

    Solution:

    We are given:

    X(123456)=(789246)

    Let:

    A=(123456),B=(789246).

    We need X such that XA=B.

    To isolate X, multiply both sides on the right by AT(AAT)1:
    (since A is 2×3, not square, we use this formula)

    X=BAT(AAT)1.

    Step 1: Compute AAT

    AAT=(123456)(142536)=(12+22+3214+25+3641+52+6342+52+62)=(14323277)

    Step 2: Compute (AAT)1

    First find determinant:

    AAT=(14)(77)(32)(32)=10781024=54

    So,

    (AAT)1=154(77323214).

    Step 3: Compute BAT

    BAT=(789246)(142536)

    =((7)(1)+(8)(2)+(9)(3)(7)(4)+(8)(5)+(9)(6)(2)(1)+(4)(2)+(6)(3)(2)(4)+(4)(5)+(6)(6))

    Compute each entry:

    BAT=(716272840542+8+188+20+36)=(501222864)

    Step 4: Compute X=BAT(AAT)1

    X=154(501222864)(77323214).

    Compute the product:

    First row:

    (50)(77)+(122)(32)=3850+3904=54,
    (50)(32)+(122)(14)=16001708=108.

    Second row:

    (28)(77)+(64)(32)=21562048=108,
    (28)(32)+(64)(14)=896+896=0

    So:

    X=154(541081080)=(1220).

    Choose the correct answer in the following questions:

    Question 9:

    If A=(αβγα) is such that A2=I, then find the correct relation among α,β,γ.

    Options:
    (A) 1+α2+βγ=0
    (B) 1α2+βγ=0
    (C) 1α2βγ=0
    (D) 1+α2βγ=0


    Solution:

    Given

    A=(αβγα)

    Compute A2:

    A2=(αβγα)(αβγα)=(α2+βγαβαβαγαγγβ+α2)=(α2+βγ00α2+βγ)

    Thus,

    A2=(α2+βγ)I.

    We are told A2=I, so:

    (α2+βγ)I=I

    That means:

    α2+βγ=1

    Rearranging:

    1α2βγ=0

    Correct Option:

    (C)  1α2βγ=0.

    Question 10:

    If the matrix A is both symmetric and skew-symmetric, then:

    Options:
    (A) A is a diagonal matrix
    (B) A is a zero matrix
    (C) A is a square matrix
    (D) None of these


    Solution:

    By definition:

    • A is symmetric if AT=A

    • A is skew-symmetric if AT=A

    If A is both, then:

    A=AT=A

    This implies:

    A=A2A=0A=0

    That means all elements of A are zero.

    Correct Option:

    (B)  A is a zero matrix.

    Question 11:

    If A is a square matrix such that A2=A, then find (I+A)37A.

    Options:
    (A) A
    (B) IA
    (C) I
    (D) 3A


    Solution:

    We are given that:

    A2=A.

    Let’s expand (I+A)3:

    (I+A)3=I3+3I2A+3IA2+A3

    Simplify each term using I2=I and A2=A:

    (I+A)3=I+3A+3A+A3

    Now, compute A3:

    A3=A2A=AA=A2=A

    Substitute this back:

    (I+A)3=I+3A+3A+A=I+7A

    Now compute:

    (I+A)37A=(I+7A)7A=I

    Final Answer:

    (C)  I