Miscellaneous Exercise on Chapter 3, Class 12th, Maths, NCERT

Question 1:

If A and B are symmetric matrices, prove that ABBA is a skew-symmetric matrix.

Answer (proof):

Recall a matrix M is skew-symmetric if MT=M

Given A and B are symmetric, so

AT=A,BT=B.

Consider the transpose of ABBA:

(ABBA)T=(AB)T(BA)T=BTATATBT.

Using symmetry of A and B we get

(ABBA)T=BAAB=(ABBA).

Thus (ABBA)T=(ABBA), so ABBA is skew-symmetric.

(As a remark, every skew-symmetric matrix has zeros on its diagonal, so the diagonal entries of ABBA are all zero.)

Question 2:

Show that the matrix BAB is symmetric according as A is symmetric or skew-symmetric.


Answer (proof):

Let A and B be square matrices of the same order, and let B denote the transpose of B.
We need to show that:

  • If A is symmetric, then BAB is symmetric.

  • If A is skew-symmetric, then BAB is skew-symmetric.


Case 1: A is symmetric

If A is symmetric, then A=A.

Consider (BAB):

(BAB)=BAB.

But since A=A,

(BAB)=BAB.

Hence, BAB is symmetric.


Case 2: A is skew-symmetric

If A is skew-symmetric, then A=A.

Now, take the transpose of BAB:

(BAB)=BAB=B(A)B=BAB.

Thus, (BAB)=BAB,
which means BAB is skew-symmetric.

Hence proved:
The matrix BAB is symmetric or skew-symmetric according as A is symmetric or skew-symmetric.

Question 3:

Find the values of x,y,z if A=(02yzxyzxyz) satisfies ATA=I.


Answer (solution):

Compute ATA. A straightforward multiplication gives

ATA=(2x20006y20003z2).

For ATA=I we must have the diagonal entries equal to 1, hence

2x2=1,6y2=1,3z2=1

Therefore

x2=12    x=±12,y2=16    y=±16,z2=13    z=±13.

All choices of independent signs are allowed, so the solutions are

(x,y,z)=(±12, ±16, ±13),

(8 sign-combinations in total).

Question 4:

For what values of x does [1  2  1](120201102)(02x)=0 ?

Answer (solution):

First compute the product of the matrix with the column vector:

(120201102)(02x)=(10+22+0x20+02+1x10+02+2x)=(4x2x)

Now left-multiply by [1  2  1]:

[1  2  1](4x2x)=14+2x+12x=4+4x

Set equal to zero:

4+4x=0x=1

Question 5:

If A=(3112), show that A25A+7I=0


Answer (solution):

Given

A=(3112),I=(1001).

Step 1: Compute A2

A2=(3112)(3112)=(3(3)+1(1)3(1)+1(2)(1)(3)+2(1)(1)(1)+2(2))=(8553).

Step 2: Compute 5A

5A=5(3112)=(155510)

Step 3: Compute 7I

7I=7(1001)=(7007)

Step 4: Substitute into A25A+7I

A25A+7I=(8553)(155510)+(7007)

Compute step-by-step:

A25A=(815555(5)310)=(7007)

Now add 7I:

A25A+7I=(7007)+(7007)=(0000)

Hence proved:

A25A+7I=0

 

Question 6:

Find x if [x    5    1](102021203)(x41)=0.

Solution:

We will simplify step-by-step.

Step 1: Multiply the matrix with the column vector

(102021203)(x41)=(1x+04+210x+24+112x+04+31)=(x+292x+3)

Step 2: Multiply the row vector [x  5  1] with the result

[x  5  1](x+292x+3)=x(x+2)+(5)(9)+(1)(2x+3)

Simplify:

=x2+2x452x3=x248.

Step 3: Set equal to zero

x248=0x2=48

x  =±43

Question 7

A manufacturer produces three products x,y,z sold in two markets with annual sales
S=(100002000180006000200008000)(rows: Market I, Market II; columns: x,y,z).
(a) Unit sale prices p=(2.501.501.00).(b) Unit costs c=(2.001.000.50).
Find (a) total revenue in each market, (b) gross profit in each market.

Solution

Use matrix multiplication. Revenue vector R (marketwise) is

R=Sp.

Compute component-wise:

Market I revenue

10000(2.5)+2000(1.5)+18000(1)=25000+3000+18000=46000.

Market II revenue

6000(2.5)+20000(1.5)+8000(1)=15000+30000+8000=53000.

So

R=(4600053000) rupees.

(b) Total cost vector C=Sc:

Market I cost

10000(2)+2000(1)+18000(0.5)=20000+2000+9000=31000.

Market II cost

6000(2)+20000(1)+8000(0.5)=12000+20000+4000=36000.

So

C=(3100036000) rupees.

Gross profit for each market G=RC:

G=(46000310005300036000)=(1500017000) rupeesFinal answers

(a) Total revenue — Market I: Rs. 46,000; Market II: Rs. 53,000.
(b) Gross profit — Market I: Rs. 15,000; Market II: Rs. 17,000.

(Also note matrix forms: R=Sp,  C=Sc,  G=S(pc)

 

Question 8:

Find the matrix X such that X(123456)=(789246).

Solution:

We are given:

X(123456)=(789246)

Let:

A=(123456),B=(789246).

We need X such that XA=B.

To isolate X, multiply both sides on the right by AT(AAT)1:
(since A is 2×3, not square, we use this formula)

X=BAT(AAT)1.

Step 1: Compute AAT

AAT=(123456)(142536)=(12+22+3214+25+3641+52+6342+52+62)=(14323277)

Step 2: Compute (AAT)1

First find determinant:

AAT=(14)(77)(32)(32)=10781024=54

So,

(AAT)1=154(77323214).

Step 3: Compute BAT

BAT=(789246)(142536)

=((7)(1)+(8)(2)+(9)(3)(7)(4)+(8)(5)+(9)(6)(2)(1)+(4)(2)+(6)(3)(2)(4)+(4)(5)+(6)(6))

Compute each entry:

BAT=(716272840542+8+188+20+36)=(501222864)

Step 4: Compute X=BAT(AAT)1

X=154(501222864)(77323214).

Compute the product:

First row:

(50)(77)+(122)(32)=3850+3904=54,
(50)(32)+(122)(14)=16001708=108.

Second row:

(28)(77)+(64)(32)=21562048=108,
(28)(32)+(64)(14)=896+896=0

So:

X=154(541081080)=(1220).

Choose the correct answer in the following questions:

Question 9:

If A=(αβγα) is such that A2=I, then find the correct relation among α,β,γ.

Options:
(A) 1+α2+βγ=0
(B) 1α2+βγ=0
(C) 1α2βγ=0
(D) 1+α2βγ=0


Solution:

Given

A=(αβγα)

Compute A2:

A2=(αβγα)(αβγα)=(α2+βγαβαβαγαγγβ+α2)=(α2+βγ00α2+βγ)

Thus,

A2=(α2+βγ)I.

We are told A2=I, so:

(α2+βγ)I=I

That means:

α2+βγ=1

Rearranging:

1α2βγ=0

Correct Option:

(C)  1α2βγ=0.

Question 10:

If the matrix A is both symmetric and skew-symmetric, then:

Options:
(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these


Solution:

By definition:

  • A is symmetric if AT=A

  • A is skew-symmetric if AT=A

If A is both, then:

A=AT=A

This implies:

A=A2A=0A=0

That means all elements of A are zero.

Correct Option:

(B)  A is a zero matrix.

Question 11:

If A is a square matrix such that A2=A, then find (I+A)37A.

Options:
(A) A
(B) IA
(C) I
(D) 3A


Solution:

We are given that:

A2=A.

Let’s expand (I+A)3:

(I+A)3=I3+3I2A+3IA2+A3

Simplify each term using I2=I and A2=A:

(I+A)3=I+3A+3A+A3

Now, compute A3:

A3=A2A=AA=A2=A

Substitute this back:

(I+A)3=I+3A+3A+A=I+7A

Now compute:

(I+A)37A=(I+7A)7A=I

Final Answer:

(C)  I

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.