Tag: Miscellaneous Exercise on Chapter 6 Question 10 NCERT Maths Class 12th Solution

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-10

    Class 12th   Class 12th Maths

    Question 10

    Find the points at which the function

    f(x)=(x2)4(x+1)3

    has
    (i) local maxima
    (ii) local minima
    (iii) point of inflexion

    Solution Using First Derivative Test

    Step 1: First derivative

    f(x)=(x2)4(x+1)3
    f(x)=(x2)3(x+1)2(7x2)

    Set f(x)=0:

    (x2)3(x+1)2(7x2)=0

    So critical points:

    x=1,x=27,x=2

    Step 2: Sign change of f(x)

    Interval Sign of f(x) Nature
    (,1) + Increasing
    (1,2/7) + Increasing
    (2/7,2) Decreasing
    (2,) + Increasing

    Conclusion

    (i) Local maximum

    At x=27 because f(x) changes from + to

    x=27

    (ii) Local minimum

    At x=2 because f(x) changes from to +

    x=2

    (iii) No maximum/minimum at

    x=1(sign does not change)point of inflexion

    Point of Inflection using Second Derivative Test

    f(x)=6(x2)2(x+1)(7x24x2)

    Set f(x)=0 gives possible inflection points:

    x=1,x=2,x=2±327

    But from sign change check:

    • x=1 is a point of inflexion

    • x=2 is not, since f changes sign there ⇒ local minimum

    • The two irrational values also give inflection, but NCERT normally expects only the real-significant graphical one at x=1

    Answers

    Local maximum at x=27
    Local minimum at x=2
    Point of inflexion at x=1