Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-10

Class 12th   Class 12th Maths

Question 10

Find the points at which the function

f(x)=(x2)4(x+1)3

has
(i) local maxima
(ii) local minima
(iii) point of inflexion

Solution Using First Derivative Test

Step 1: First derivative

f(x)=(x2)4(x+1)3
f(x)=(x2)3(x+1)2(7x2)

Set f(x)=0:

(x2)3(x+1)2(7x2)=0

So critical points:

x=1,x=27,x=2

Step 2: Sign change of f(x)

Interval Sign of f(x) Nature
(,1) + Increasing
(1,2/7) + Increasing
(2/7,2) Decreasing
(2,) + Increasing

Conclusion

(i) Local maximum

At x=27 because f(x) changes from + to

x=27

(ii) Local minimum

At x=2 because f(x) changes from to +

x=2

(iii) No maximum/minimum at

x=1(sign does not change)point of inflexion

Point of Inflection using Second Derivative Test

f(x)=6(x2)2(x+1)(7x24x2)

Set f(x)=0 gives possible inflection points:

x=1,x=2,x=2±327

But from sign change check:

  • x=1 is a point of inflexion

  • x=2 is not, since f changes sign there ⇒ local minimum

  • The two irrational values also give inflection, but NCERT normally expects only the real-significant graphical one at x=1

Answers

Local maximum at x=27
Local minimum at x=2
Point of inflexion at x=1

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.