Tag: Miscellaneous Exercise on Chapter 6 Question 11 NCERT Class 12th Maths Solution

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-11

    Class 12th   Class 12th Maths

    Question 11.
    Find the absolute maximum and minimum values of the function

    f(x)=cos2x+sinx,x[0,π]

    Solution

    Given:

    f(x)=cos2x+sinx=1sin2x+sinx
    f(x)=1+sinxsin2x

    Step 1: First derivative

    f(x)=cosx2sinxcosx
    f(x)=cosx(12sinx)

    Set f(x)=0:

    cosx=0or12sinx=0

    1. cosx=0x=π2

    2. 12sinx=0sinx=12

    x=π6,  5π6

    So critical points:

    x=π6, π2, 5π6

    Also evaluate function at end points:

    x=0,x=π


    Step 2: Evaluate f(x) at critical and end points

    x f(x)=cos2x+sinx
    0 1+0=1
    π 1+0=1
    π6

    (32)2+12=34+12=54=1.25

    π2 0+1=1
    5π6

    (32)2+12=34+12=54=1.25

    Final Answer

    Absolute Maximum value

    54at x=π6, 5π6

    Absolute Minimum value

    1at x=0, π2, π


    Extras :-

    Graph of f(x)=cos2x+sinx on [0,π]

    The graph now properly displays the exact function heading centered at the top.
    The curve and marked points show clearly:

    • Absolute Maximum Value

      f(π6)=f(5π6)=54

    • Absolute Minimum Value

      f(0)=f(π2)=f(π)=1