Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-11

Class 12th   Class 12th Maths

Question 11.
Find the absolute maximum and minimum values of the function

f(x)=cos2x+sinx,x[0,π]

Solution

Given:

f(x)=cos2x+sinx=1sin2x+sinx
f(x)=1+sinxsin2x

Step 1: First derivative

f(x)=cosx2sinxcosx
f(x)=cosx(12sinx)

Set f(x)=0:

cosx=0or12sinx=0

  1. cosx=0x=π2

  2. 12sinx=0sinx=12

x=π6,  5π6

So critical points:

x=π6, π2, 5π6

Also evaluate function at end points:

x=0,x=π


Step 2: Evaluate f(x) at critical and end points

x f(x)=cos2x+sinx
0 1+0=1
π 1+0=1
π6

(32)2+12=34+12=54=1.25

π2 0+1=1
5π6

(32)2+12=34+12=54=1.25

Final Answer

Absolute Maximum value

54at x=π6, 5π6

Absolute Minimum value

1at x=0, π2, π


Extras :-

Graph of f(x)=cos2x+sinx on [0,π]

The graph now properly displays the exact function heading centered at the top.
The curve and marked points show clearly:

  • Absolute Maximum Value

    f(π6)=f(5π6)=54

  • Absolute Minimum Value

    f(0)=f(π2)=f(π)=1

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.