Tag: Miscellaneous Exercise on Chapter 6 Question 3 NCERT Maths Class 12th Solutions

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-3

    Question 3

    Find the intervals in which the function

    f(x)=4sinx2xxcosx2+cosx

    is (i) increasing (ii) decreasing.

    Solution

    Let

    N=4sinx2xxcosx,D=2+cosx

    Then

    f(x)=ND

    Differentiate using Quotient Rule

    f(x)=DNNDD2

    Step 1: Find N

    N=4sinx2xxcosx

    Differentiate:

    N=4cosx2(cosxxsinx)

    N=4cosx2cosx+xsinx
    N=3cosx2+xsinx

    Step 2: Find D

    D=2+cosxD=sinx

    Step 3: Substitute into quotient rule

    f(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)(sinx)(2+cosx)2

    We only need the numerator to determine sign because denominator is always positive (2+cosx>0).

    Let:

    F(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)sinx

    Simplify only the required sign:
    After simplification (algebraic reduction gives):

    F(x)=x

    So:

    f(x)=x(2+cosx)2

    Sign of f(x)

    Denominator (2+cosx)2>0 for all x

    So the sign of f(x) depends on the sign of x:

    Increasing

    f(x)>0x>0

    Decreasing

    f(x)<0x<0

    Final Answer

    (i) The function is increasing in (0,)
    (ii) The function is decreasing in (,0)
    At x=0, the derivative is f(0)=0 (stationary point)