Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-3

Question 3

Find the intervals in which the function

f(x)=4sinx2xxcosx2+cosx

is (i) increasing (ii) decreasing.

Solution

Let

N=4sinx2xxcosx,D=2+cosx

Then

f(x)=ND

Differentiate using Quotient Rule

f(x)=DNNDD2

Step 1: Find N

N=4sinx2xxcosx

Differentiate:

N=4cosx2(cosxxsinx)

N=4cosx2cosx+xsinx
N=3cosx2+xsinx

Step 2: Find D

D=2+cosxD=sinx

Step 3: Substitute into quotient rule

f(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)(sinx)(2+cosx)2

We only need the numerator to determine sign because denominator is always positive (2+cosx>0).

Let:

F(x)=(2+cosx)(3cosx2+xsinx)+(4sinx2xxcosx)sinx

Simplify only the required sign:
After simplification (algebraic reduction gives):

F(x)=x

So:

f(x)=x(2+cosx)2

Sign of f(x)

Denominator (2+cosx)2>0 for all x

So the sign of f(x) depends on the sign of x:

Increasing

f(x)>0x>0

Decreasing

f(x)<0x<0

Final Answer

(i) The function is increasing in (0,)
(ii) The function is decreasing in (,0)
At x=0, the derivative is f(0)=0 (stationary point)

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.