Tag: Miscellaneous Exercise on Chapter 6 Question 5 NCERT Maths Class 12th Solution

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-7

    Question 7

    The sum of the perimeters of a circle and a square is k, where k is some constant. Prove that the sum of their areas is least when the side of the square is double the radius of the circle.

    Solution

    Let

    • r= radius of the circle

    • a= side of the square

    Given:

    Sum of the perimeters is constant:

    2πr+4a=k

    From this,

    4a=k2πr

    a=k2πr4

    Total Area

    A=Acircle+Asquare=πr2+a2

    Substitute value of a:

    A=πr2+(k2πr4)2
    A=πr2+(k2πr)216

    Expand the square:

    A=πr2+k24πkr+4π2r216

    A=πr2+k216πkr4+π2r24

    Combine like terms in r2:

    A=k216πkr4+(π+π24)r2

    Differentiate to Find Minimum

    A(r)=πk4+2(π+π24)r

    Set A(r)=0:

    πk4+2(π+π24)r=0

    2(π+π24)r=πk4

    r=πk42(π+π24)

    r=πk8(π+π24)

    Simplify:

    r=πk8π(1+π4)=k8(1+π4)=k2(4+π)

    Now substitute into equation for a:

    a=k2πr4=k2πk2(4+π)4

    a=kπk(4+π)4=k(1π4+π)4=k(44+π)4

    a=k4+π

    Compare a and r

    We have:

    r=k2(4+π),a=k4+π

    So:

    a=2r

    Conclusion

    The total area is least when the side of the square is a=2r.

    Final Statement

    Sum of areas is minimum when the side of the square is double the radius of the circle.


  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-6

    Question 6

    A tank with rectangular base and rectangular sides, open at the top, is to be constructed so that its depth is 2 m and volume is 8 m³. If building the tank costs Rs 70 per m² for the base and Rs 45 per m² for the sides, what is the least cost of constructing the tank?


    Solution

    Let the rectangular base have dimensions:

    l=length,w=width,h=depth=2 m

    Given: Volume

    lwh=8
    lw2=8lw=4

    So:

    w=4l

    Cost calculation

    Base area

    Area=lw=4 m2

    Cost of base:

    Cbase=70×4=280 Rs

    Area of 4 rectangular side walls

    Total side area=2lh+2wh=2l(2)+2(4l)(2)=4l+16l

    Cost of sides:

    Csides=45(4l+16l)=180l+720l

    Total Cost

    C=Cbase+Csides=280+180l+720l

    To minimize cost, differentiate C w.r.t. l:

    C(l)=180720l2

    Set C(l)=0:

    180=720l2

    l2=720180=4l=2 m

    Then:

    w=4l=42=2 m

    Minimum Cost

    C=280+180(2)+7202=280+360+360=1000

    Final Answer

    The least cost of constructing the tank is Rs 1000.

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-5

    Question 5

    Find the maximum area of an isosceles triangle inscribed in the ellipse

    x2a2+y2b2=1

    with its vertex at one end of the major axis.

    Solution

    Assume a>b, so the major axis is along the x-axis.
    Take the vertex of the isosceles triangle at the right end of the major axis:

    A(a,0).

    Let the other two vertices be symmetric about the x-axis (this gives an isosceles triangle and will turn out to be the max–area case):

    B(acosθ,bsinθ),C(acosθ,bsinθ),0<θ<π.

    These lie on the ellipse since they are in parametric form:

    x=acosθ,y=±bsinθ.

    Area of the triangle

    • Base BC is vertical:

      length of BC=2bsinθ.

    • Height is the horizontal distance from A(a,0) to the line x=acosθ:

      height=aacosθ=a(1cosθ).

    So the area A(θ) of triangle ABC is

    A(θ)=12×base×height=122bsinθa(1cosθ)=absinθ(1cosθ).

    We must maximize

    A(θ)=absinθ(1cosθ),0<θ<π.

    Maximize A(θ)

    Differentiate:

    A(θ)=ab(sinθsinθcosθ),
    A(θ)=ab(cosθ(cos2θsin2θ)).

    Use sin2θ=1cos2θ:

    cos2θsin2θ=cos2θ(1cos2θ)=2cos2θ1.

    So

    A(θ)=ab(cosθ(2cos2θ1))=ab(1+cosθ2cos2θ).

    Set A(θ)=0:

    1+cosθ2cos2θ=0.

    Let c=cosθ. Then

    2c2c1=0
    c=1±1+84=1±34=1, 12.

    • cosθ=1θ=0, which gives zero area, so not a maximum.

    • cosθ=12θ=2π3in (0,π), valid.

    Then

    sinθ=sin2π3=32.

    Substitute in the area:

    Amax=absinθ(1cosθ)=ab(32)(1(12))=ab(32)(32)=334ab.

    Final Answer

    The maximum area of the isosceles triangle is 334ab.