Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-7

Question 7

The sum of the perimeters of a circle and a square is k, where k is some constant. Prove that the sum of their areas is least when the side of the square is double the radius of the circle.

Solution

Let

  • r= radius of the circle

  • a= side of the square

Given:

Sum of the perimeters is constant:

2πr+4a=k

From this,

4a=k2πr

a=k2πr4

Total Area

A=Acircle+Asquare=πr2+a2

Substitute value of a:

A=πr2+(k2πr4)2
A=πr2+(k2πr)216

Expand the square:

A=πr2+k24πkr+4π2r216

A=πr2+k216πkr4+π2r24

Combine like terms in r2:

A=k216πkr4+(π+π24)r2

Differentiate to Find Minimum

A(r)=πk4+2(π+π24)r

Set A(r)=0:

πk4+2(π+π24)r=0

2(π+π24)r=πk4

r=πk42(π+π24)

r=πk8(π+π24)

Simplify:

r=πk8π(1+π4)=k8(1+π4)=k2(4+π)

Now substitute into equation for a:

a=k2πr4=k2πk2(4+π)4

a=kπk(4+π)4=k(1π4+π)4=k(44+π)4

a=k4+π

Compare a and r

We have:

r=k2(4+π),a=k4+π

So:

a=2r

Conclusion

The total area is least when the side of the square is a=2r.

Final Statement

Sum of areas is minimum when the side of the square is double the radius of the circle.


👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.