Tag: Miscellaneous Exercise on Chapter 6 Question 7 NCERT Class 12th Maths Solutions

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-7

    Question 7

    The sum of the perimeters of a circle and a square is k, where k is some constant. Prove that the sum of their areas is least when the side of the square is double the radius of the circle.

    Solution

    Let

    • r= radius of the circle

    • a= side of the square

    Given:

    Sum of the perimeters is constant:

    2πr+4a=k

    From this,

    4a=k2πr

    a=k2πr4

    Total Area

    A=Acircle+Asquare=πr2+a2

    Substitute value of a:

    A=πr2+(k2πr4)2
    A=πr2+(k2πr)216

    Expand the square:

    A=πr2+k24πkr+4π2r216

    A=πr2+k216πkr4+π2r24

    Combine like terms in r2:

    A=k216πkr4+(π+π24)r2

    Differentiate to Find Minimum

    A(r)=πk4+2(π+π24)r

    Set A(r)=0:

    πk4+2(π+π24)r=0

    2(π+π24)r=πk4

    r=πk42(π+π24)

    r=πk8(π+π24)

    Simplify:

    r=πk8π(1+π4)=k8(1+π4)=k2(4+π)

    Now substitute into equation for a:

    a=k2πr4=k2πk2(4+π)4

    a=kπk(4+π)4=k(1π4+π)4=k(44+π)4

    a=k4+π

    Compare a and r

    We have:

    r=k2(4+π),a=k4+π

    So:

    a=2r

    Conclusion

    The total area is least when the side of the square is a=2r.

    Final Statement

    Sum of areas is minimum when the side of the square is double the radius of the circle.