Tag: Miscellaneous Exercise on Chapter 6 Question 8 NCERT class 12th maths solution

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-8

    Question 8

    A window is in the form of a rectangle surmounted by a semicircle. The total perimeter of the window is 10 m.
    Find the dimensions of the window so that the area is maximum (i.e., it admits maximum light).


    Solution

    Let

    • w= width of the rectangle (also diameter of the semicircle)

    • h= height of the rectangular part

    • Radius of semicircle r=w2

    Perimeter Condition

    The perimeter of the shape includes:

    • top semicircle arc: 12(2πr)=πr=πw2

    • two vertical sides: 2h

    • bottom width: w

    So:w+2h+πw2=10
    2h=10wπw2
    h=10w(1+π2)2

    Area of the Window

    A=Area of rectangle+Area of semicircle=wh+12πr2=wh+12π(w2)2
    A=wh+πw28

    Substitute h:

    A=w(10w(1+π2)2)+πw28
    A=w(10w(1+π2))2+πw28

    Simplify:

    A=5ww22(1+π2)+πw28
    A=5ww2(12+π4π8)
    A=5ww2(12+π8)

    Differentiate to Maximize Area

    A(w)=52w(12+π8)Set A(w)=0:

    5=w(1+π4)
    w=51+π4=204+π

    Find h

    h=10w(1+π2)2h=10204+π(1+π2)2

    Simplify:

    h=1020(2+π2)4+π2=1010(2+π)4+π2
    h=10(4+π)10(2+π)4+π2=10(2)2(4+π)=104+π

    Final Dimensions

    w=204+π m (width)
    h=104+π m (height of rectangle)
    r=w2=104+π m (radius of semicircle)

    Conclusion

    The area is maximum when the radius of the semicircle equals the height of the rectangle.
    h=r