Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-8

Question 8

A window is in the form of a rectangle surmounted by a semicircle. The total perimeter of the window is 10 m.
Find the dimensions of the window so that the area is maximum (i.e., it admits maximum light).


Solution

Let

  • w= width of the rectangle (also diameter of the semicircle)

  • h= height of the rectangular part

  • Radius of semicircle r=w2

Perimeter Condition

The perimeter of the shape includes:

  • top semicircle arc: 12(2πr)=πr=πw2

  • two vertical sides: 2h

  • bottom width: w

So:w+2h+πw2=10
2h=10wπw2
h=10w(1+π2)2

Area of the Window

A=Area of rectangle+Area of semicircle=wh+12πr2=wh+12π(w2)2
A=wh+πw28

Substitute h:

A=w(10w(1+π2)2)+πw28
A=w(10w(1+π2))2+πw28

Simplify:

A=5ww22(1+π2)+πw28
A=5ww2(12+π4π8)
A=5ww2(12+π8)

Differentiate to Maximize Area

A(w)=52w(12+π8)Set A(w)=0:

5=w(1+π4)
w=51+π4=204+π

Find h

h=10w(1+π2)2h=10204+π(1+π2)2

Simplify:

h=1020(2+π2)4+π2=1010(2+π)4+π2
h=10(4+π)10(2+π)4+π2=10(2)2(4+π)=104+π

Final Dimensions

w=204+π m (width)
h=104+π m (height of rectangle)
r=w2=104+π m (radius of semicircle)

Conclusion

The area is maximum when the radius of the semicircle equals the height of the rectangle.
h=r

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.