Tag: Miscellaneous Exercises on Chapter 4

  • Miscellaneous Exercises on Chapter 4, Class 12th, Maths

    Question 1.
    Prove that the determinant

    xsinθcosθsinθx1cosθ1x

    is independent of θ.

    Solution.

    Compute the determinant by expanding along the first row:

    D=xx11xsinθsinθ1cosθx+cosθsinθxcosθ1

    Evaluate each 2×2 determinant:

    xx11x=x((x)(x)11)=x(x21)=x3x,sinθsinθ1cosθx=sinθ((sinθ)x1cosθ)=sinθ(xsinθcosθ)=xsin2θ+sinθcosθ,cosθsinθxcosθ1=cosθ((sinθ)1(x)cosθ)=cosθ(sinθ+xcosθ)=sinθcosθ+xcos2θAdd the three parts:

    D=(x3x)+(xsin2θ+sinθcosθ)+(sinθcosθ+xcos2θ)=x3x+x(sin2θ+cos2θ)+(sinθcosθsinθcosθ)=x3x+x1+0=x3Thus the determinant equals x3, which does not depend on θ

    Question 2.
    Evaluate the determinant

    cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

    Solution:

    Let

    D=cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

    We will expand along the second row since it has a zero term.

    Step 1: Expansion along second row

    D=(sinβ)(1)2+1cosαsinβsinαsinαsinβcosα

    +(cosβ)(1)2+2cosαcosβsinαsinαcosβcosα

    Simplify the cofactors:

    D=sinβcosαsinβsinαsinαsinβcosα+cosβcosαcosβsinαsinαcosβcosα

    Step 2: Evaluate the 2×2 determinants

    For the first:

    cosαsinβsinαsinαsinβcosα=(cosαsinβ)(cosα)(sinα)(sinαsinβ)

    =sinβ(cos2α+sin2α)=sinβ.

    For the second:

    cosαcosβsinαsinαcosβcosα=(cosαcosβ)(cosα)(sinα)(sinαcosβ)

    =cosβ(cos2α+sin2α)=cosβ.

    Step 3: Substitute back

    D=sinβ(sinβ)+cosβ(cosβ)=sin2β+cos2β=1

     Final Answer:

    D=1

    Question 3.
    If

    A1=(3111565522)andB=(122130021),

    find (AB)1

    Solution:

    We know the property of inverse of a product:

    (AB)1=B1A1

    Step 1: Find B1

    Let

    B=(122130021)

    To find B1, compute by the adjoint method (or via row operations).
    After simplification, we get:

    B1=(326112225)

    Step 2: Compute (AB)1=B1A1

    A1=(3111565522)

    Now multiply B1 and A1:

    (AB)1=(326112225)(3111565522)

    Step 3: Matrix multiplication

    (AB)111=3(3)+2(15)+6(5)=930+30=9,(AB)121=3(1)+2(6)+6(2)=3+1212=3,(AB)131=3(1)+2(5)+6(2)=310+12=5,(AB)211=1(3)+1(15)+2(5)=315+10=2,(AB)221=1(1)+1(6)+2(2)=1+64=1,(AB)231=1(1)+1(5)+2(2)=15+4=0,(AB)311=2(3)+2(15)+5(5)=630+25=1,(AB)321=2(1)+2(6)+5(2)=2+1210=0,(AB)331=2(1)+2(5)+5(2)=210+10=2.

    Step 4: Write the result

    (AB)1=(935210102)

    Final Answer:

    (AB)1=(935210102)

    Question 4.
    Let

    A=(121231115)

    Verify that
    (i) [adjA]1=adj(A1)
    (ii) (A1)1=A


    Answer & proof

    (i) General identity and verification.

    For any invertible square matrix A we have the identity

    adjA=(detA)A1

    Taking inverses on both sides (and using (cM)1=c1M1 for scalar c0) gives

    (adjA)1=((detA)A1)1=(detA)1(A1)1=(detA)1A

    Also for the inverse matrix A1 we have

    adj(A1)=(det(A1))(A1)1

    But det(A1)=(detA)1 and (A1)1=A, so

    adj(A1)=(detA)1A

    Comparing the two expressions we obtain the required equality for any invertible A:

    (adjA)1=adj(A1)

    Verification for the given matrix A.

    Compute detA, adjA and the two sides explicitly:

    detA=5

    One finds

    adjA=(1491941111),A1=15(1491941111)=(14/59/51/59/54/51/51/51/51/5)

    Then

    (adjA)1=(1/detA)A=15(121231115)=(1/52/51/52/53/51/51/51/51)

    And using adj(A1)=(detA1)(A1)1=(detA)1A gives exactly the same matrix. So the identity holds for this A.

     

    (ii):

    Given

    A=(121231115),

    verify that

    (A1)1=A

    Step 1. Find A1

    We already know from earlier computation that

    det(A)=5

    Now, let’s find the adjoint of A:

    Compute cofactors of A:

    Cofactor matrix of A=(1491941111)

    So the adjoint of A is its transpose:

    adj(A)=(1491941111)

    Hence,

    A1=1det(A)adj(A)=15(1491941111)=(1459515954515151515)

    Step 2. Find (A1)1

    By the definition of matrix inverse:

    A1A=I

    Multiplying both sides on the left by (A1)1, we get:

    (A1)1(A1)A=(A1)1I,

    which simplifies to:

    A=(A1)1

    Step 3. Verify numerically

    If you actually take the inverse of A1 (by determinant and adjoint, or by direct computation),
    you’ll get back the original matrix A:

    (A1)1=(121231115)=A

    Final Answer:

    (A1)1=A.

    Question 5.
    Evaluate

    xyx+yyx+yxx+yxy

    Solution:

    Let

    D=xyx+yyx+yxx+yxy

    We will simplify this determinant using column operations.

    Step 1: Simplify columns

    Let’s apply the operation

    C3C3C1C2

    (i.e., replace the third column with C3C1C2)

    Compute the new third column entries:

    • For first row: (x+y)xy=0

    • For second row: xy(x+y)=xyxy=2y

    • For third row: y(x+y)x=yxyx=2x

    So the new determinant becomes:

    D=xy0yx+y2yx+yx2x

    Step 2: Expand along the first row (since it has a zero)

    D=xx+y2yx2xyy2yx+y2x

    Step 3: Compute each 2×2 determinant

    1. For the first one:

    x+y2yx2x=(x+y)(2x)(2y)(x)

    =2x(x+y)+2xy=2x22xy+2xy=2x2.

    1. For the second one:

    y2yx+y2x=y(2x)(2y)(x+y)

    =2xy+2y(x+y)=2xy+2xy+2y2=2y2

    Step 4: Substitute back

    D=x(2x2)y(2y2)=2x32y3=2(x3+y3)

    Final Answer:

    xyx+yyx+yxx+yxy=2(x3+y3).

    Question 6.
    Evaluate

    Solution:

    Let

    We’ll simplify this determinant using row operations.

    Step 1: Simplify rows

    Perform the following operations:

    Compute the new rows:

    • R2=(1,x+y,y)(1,x,y)=(0,y,0)

    • R3=(1,x,x+y)(1,x,y)=(0,0,y)

    So the new determinant becomes:

    Step 2: Expand along the first column

    Final Answer:

    Question 7.
    Solve the system

    {2x+3y+10z=4,4x6y+5z=1,6x+9y20z=2

    Solution (matrix method)

    Put u=1x,  v=1y,  w=1z. Then the system becomes linear in u,v,w:

    2u+3v+10w=4,4u6v+5w=1,6u+9v20w=2

    In matrix form At=b where

    A=(23104656920),t=(uvw),b=(412)

    Solve t=A1b. Doing this (or by Cramer’s rule / row reduction) gives

    t=(uvw)=(121315)

    So

    u=12,  v=13,  w=15

    Convert back to x,y,z:

    x=1u=2,y=1v=3,z=1w=5

    Check

    Substitute (x,y,z)=(2,3,5) into the original equations:

    22+33+105=1+1+2=4,4263+55=22+1=1

    ,62+93205=3+34=2

    all hold.

    Answer: x=2,  y=3,  z=5.

    Question 8.
    If x,y,z are nonzero real numbers, then the inverse of the matrix

    A=(x000y000z)

    is which of the following?

    (A) (x1000y1000z1)


    (B) xyz(x1000y1000z1)


    (C) 1xyz(x000y000z)


    (D) 1xyz(100010001)

    Answer: (A).

    Reason: For a diagonal matrix, the inverse (when all diagonal entries are nonzero) is the diagonal matrix of reciprocals. Check AA1=I:

    (x000y000z)(x1000y1000z1)=(100010001)

    Question 9.
    Let

    Which of the following is true?
    (A) det(A)=0
    (B) det(A)(2,)
    (C) det(A)(2,4)
    (D) det(A)[2,4]

    Solution

    Compute the determinant by expansion along the first row:

    So detA=2(1+sin2θ)

    Since 0sin2θ1, we have

    Thus det(A)[2,4]. The correct choice is (D).