Miscellaneous Exercises on Chapter 4, Class 12th, Maths

Question 1.
Prove that the determinant

xsinθcosθsinθx1cosθ1x

is independent of θ.

Solution.

Compute the determinant by expanding along the first row:

D=xx11xsinθsinθ1cosθx+cosθsinθxcosθ1

Evaluate each 2×2 determinant:

xx11x=x((x)(x)11)=x(x21)=x3x,sinθsinθ1cosθx=sinθ((sinθ)x1cosθ)=sinθ(xsinθcosθ)=xsin2θ+sinθcosθ,cosθsinθxcosθ1=cosθ((sinθ)1(x)cosθ)=cosθ(sinθ+xcosθ)=sinθcosθ+xcos2θAdd the three parts:

D=(x3x)+(xsin2θ+sinθcosθ)+(sinθcosθ+xcos2θ)=x3x+x(sin2θ+cos2θ)+(sinθcosθsinθcosθ)=x3x+x1+0=x3Thus the determinant equals x3, which does not depend on θ

Question 2.
Evaluate the determinant

cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

Solution:

Let

D=cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα

We will expand along the second row since it has a zero term.

Step 1: Expansion along second row

D=(sinβ)(1)2+1cosαsinβsinαsinαsinβcosα

+(cosβ)(1)2+2cosαcosβsinαsinαcosβcosα

Simplify the cofactors:

D=sinβcosαsinβsinαsinαsinβcosα+cosβcosαcosβsinαsinαcosβcosα

Step 2: Evaluate the 2×2 determinants

For the first:

cosαsinβsinαsinαsinβcosα=(cosαsinβ)(cosα)(sinα)(sinαsinβ)

=sinβ(cos2α+sin2α)=sinβ.

For the second:

cosαcosβsinαsinαcosβcosα=(cosαcosβ)(cosα)(sinα)(sinαcosβ)

=cosβ(cos2α+sin2α)=cosβ.

Step 3: Substitute back

D=sinβ(sinβ)+cosβ(cosβ)=sin2β+cos2β=1

 Final Answer:

D=1

Question 3.
If

A1=(3111565522)andB=(122130021),

find (AB)1

Solution:

We know the property of inverse of a product:

(AB)1=B1A1

Step 1: Find B1

Let

B=(122130021)

To find B1, compute by the adjoint method (or via row operations).
After simplification, we get:

B1=(326112225)

Step 2: Compute (AB)1=B1A1

A1=(3111565522)

Now multiply B1 and A1:

(AB)1=(326112225)(3111565522)

Step 3: Matrix multiplication

(AB)111=3(3)+2(15)+6(5)=930+30=9,(AB)121=3(1)+2(6)+6(2)=3+1212=3,(AB)131=3(1)+2(5)+6(2)=310+12=5,(AB)211=1(3)+1(15)+2(5)=315+10=2,(AB)221=1(1)+1(6)+2(2)=1+64=1,(AB)231=1(1)+1(5)+2(2)=15+4=0,(AB)311=2(3)+2(15)+5(5)=630+25=1,(AB)321=2(1)+2(6)+5(2)=2+1210=0,(AB)331=2(1)+2(5)+5(2)=210+10=2.

Step 4: Write the result

(AB)1=(935210102)

Final Answer:

(AB)1=(935210102)

Question 4.
Let

A=(121231115)

Verify that
(i) [adjA]1=adj(A1)
(ii) (A1)1=A


Answer & proof

(i) General identity and verification.

For any invertible square matrix A we have the identity

adjA=(detA)A1

Taking inverses on both sides (and using (cM)1=c1M1 for scalar c0) gives

(adjA)1=((detA)A1)1=(detA)1(A1)1=(detA)1A

Also for the inverse matrix A1 we have

adj(A1)=(det(A1))(A1)1

But det(A1)=(detA)1 and (A1)1=A, so

adj(A1)=(detA)1A

Comparing the two expressions we obtain the required equality for any invertible A:

(adjA)1=adj(A1)

Verification for the given matrix A.

Compute detA, adjA and the two sides explicitly:

detA=5

One finds

adjA=(1491941111),A1=15(1491941111)=(14/59/51/59/54/51/51/51/51/5)

Then

(adjA)1=(1/detA)A=15(121231115)=(1/52/51/52/53/51/51/51/51)

And using adj(A1)=(detA1)(A1)1=(detA)1A gives exactly the same matrix. So the identity holds for this A.

 

(ii):

Given

A=(121231115),

verify that

(A1)1=A

Step 1. Find A1

We already know from earlier computation that

det(A)=5

Now, let’s find the adjoint of A:

Compute cofactors of A:

Cofactor matrix of A=(1491941111)

So the adjoint of A is its transpose:

adj(A)=(1491941111)

Hence,

A1=1det(A)adj(A)=15(1491941111)=(1459515954515151515)

Step 2. Find (A1)1

By the definition of matrix inverse:

A1A=I

Multiplying both sides on the left by (A1)1, we get:

(A1)1(A1)A=(A1)1I,

which simplifies to:

A=(A1)1

Step 3. Verify numerically

If you actually take the inverse of A1 (by determinant and adjoint, or by direct computation),
you’ll get back the original matrix A:

(A1)1=(121231115)=A

Final Answer:

(A1)1=A.

Question 5.
Evaluate

xyx+yyx+yxx+yxy

Solution:

Let

D=xyx+yyx+yxx+yxy

We will simplify this determinant using column operations.

Step 1: Simplify columns

Let’s apply the operation

C3C3C1C2

(i.e., replace the third column with C3C1C2)

Compute the new third column entries:

  • For first row: (x+y)xy=0

  • For second row: xy(x+y)=xyxy=2y

  • For third row: y(x+y)x=yxyx=2x

So the new determinant becomes:

D=xy0yx+y2yx+yx2x

Step 2: Expand along the first row (since it has a zero)

D=xx+y2yx2xyy2yx+y2x

Step 3: Compute each 2×2 determinant

  1. For the first one:

x+y2yx2x=(x+y)(2x)(2y)(x)

=2x(x+y)+2xy=2x22xy+2xy=2x2.

  1. For the second one:

y2yx+y2x=y(2x)(2y)(x+y)

=2xy+2y(x+y)=2xy+2xy+2y2=2y2

Step 4: Substitute back

D=x(2x2)y(2y2)=2x32y3=2(x3+y3)

Final Answer:

xyx+yyx+yxx+yxy=2(x3+y3).

Question 6.
Evaluate

Solution:

Let

We’ll simplify this determinant using row operations.

Step 1: Simplify rows

Perform the following operations:

Compute the new rows:

  • R2=(1,x+y,y)(1,x,y)=(0,y,0)

  • R3=(1,x,x+y)(1,x,y)=(0,0,y)

So the new determinant becomes:

Step 2: Expand along the first column

Final Answer:

Question 7.
Solve the system

{2x+3y+10z=4,4x6y+5z=1,6x+9y20z=2

Solution (matrix method)

Put u=1x,  v=1y,  w=1z. Then the system becomes linear in u,v,w:

2u+3v+10w=4,4u6v+5w=1,6u+9v20w=2

In matrix form At=b where

A=(23104656920),t=(uvw),b=(412)

Solve t=A1b. Doing this (or by Cramer’s rule / row reduction) gives

t=(uvw)=(121315)

So

u=12,  v=13,  w=15

Convert back to x,y,z:

x=1u=2,y=1v=3,z=1w=5

Check

Substitute (x,y,z)=(2,3,5) into the original equations:

22+33+105=1+1+2=4,4263+55=22+1=1

,62+93205=3+34=2

all hold.

Answer: x=2,  y=3,  z=5.

Question 8.
If x,y,z are nonzero real numbers, then the inverse of the matrix

A=(x000y000z)

is which of the following?

(A) (x1000y1000z1)


(B) xyz(x1000y1000z1)


(C) 1xyz(x000y000z)


(D) 1xyz(100010001)

Answer: (A).

Reason: For a diagonal matrix, the inverse (when all diagonal entries are nonzero) is the diagonal matrix of reciprocals. Check AA1=I:

(x000y000z)(x1000y1000z1)=(100010001)

Question 9.
Let

Which of the following is true?
(A) det(A)=0
(B) det(A)(2,)
(C) det(A)(2,4)
(D) det(A)[2,4]

Solution

Compute the determinant by expansion along the first row:

So detA=2(1+sin2θ)

Since 0sin2θ1, we have

Thus det(A)[2,4]. The correct choice is (D).

 

 

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.