Tag: NCERT 12th maths-miscellaneous exercise on chapter-6 question-4 solution

  • Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-4

    Question 4

    Find the intervals in which the function

    f(x)=x3+1x3,x0

    is (i) increasing (ii) decreasing.

    Solution

    Step 1: Differentiate the function

    f(x)=x3+x3
    f(x)=3x23x4
    f(x)=3(x21x4)
    f(x)=3x61x4
    f(x)=3(x61)x4

    Step 2: Determine where f(x)>0 or f(x)<0

    The denominator x4>0 for all x0, so the sign of f(x) depends on the numerator:

    x61

    Solve:

    x61>0x6>1x>1
    x61<0x6<1x<1,x0

    Final Result

    (i) Increasing intervals

    f(x)>0x>1
    The function is increasing in (,1)(1,)

    (ii) Decreasing intervals

    f(x)<00<x<1
    The function is decreasing in (1,0)(0,1)

    Summary

    Increasing : (,1)(1,)Decreasing : (1,0)(0,1)


    Let’s check the graph of the given function :

    Following is the graph of the derivative of the function: