Class 12th Maths Miscellaneous Exercise on Chapter 6 – Question-4

Question 4

Find the intervals in which the function

f(x)=x3+1x3,x0

is (i) increasing (ii) decreasing.

Solution

Step 1: Differentiate the function

f(x)=x3+x3
f(x)=3x23x4
f(x)=3(x21x4)
f(x)=3x61x4
f(x)=3(x61)x4

Step 2: Determine where f(x)>0 or f(x)<0

The denominator x4>0 for all x0, so the sign of f(x) depends on the numerator:

x61

Solve:

x61>0x6>1x>1
x61<0x6<1x<1,x0

Final Result

(i) Increasing intervals

f(x)>0x>1
The function is increasing in (,1)(1,)

(ii) Decreasing intervals

f(x)<00<x<1
The function is decreasing in (1,0)(0,1)

Summary

Increasing : (,1)(1,)Decreasing : (1,0)(0,1)


Let’s check the graph of the given function :

Following is the graph of the derivative of the function:

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.