Tag: NCERT class 12th Chapter 5 Exercise 5.3 solutions maths

  • Exercise-5.3, Class 12th, Maths, Chapter 5, NCERT

    Find ddin the following:

    Question 1

    Differentiate:

    2x+3y=sinx

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(sinx)

    2+3dydx=cosx

    Now solve for dydx:

    3dydx=cosx2

    dydx=cosx23


    Question 2

    Differentiate:

    2x+3y=siny

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(siny)
    2+3dydx=cosydydx

    (using chain rule on siny)

    Now collect dydx terms on one side:

    3dydxcosydydx=2

    Factor out dydx:

    dydx(3cosy)=2

    So,

    dydx=23cosy


    Question 3

    Find dydx if:

    ax+by2=cosy

    Solution

    Differentiate both sides with respect to x:

    ddx(ax)+ddx(by2)=ddx(cosy)

    Differentiate term by term

    a+b2ydydx=sinydydx

    (using chain rule on cos y)

    So,

    a+2bydydx=sinydydx

    Move all dydx terms to one side:

    2bydydx+sinydydx=a

    Factor out dydx:

    dydx(2by+siny)=a

    Final Answer

    dydx=a2by+siny


    Question 4

    Find dydx if:

    xy+y2=tanx+y

    Solution

    Differentiate both sides w.r.t. x:

    ddx(xy)+ddx(y2)=ddx(tanx)+ddx(y)

    Differentiate term by term

    1. ddx(xy)=xdydx+y
      (product rule)

    2. ddx(y2)=2ydydx

    3. ddx(tanx)=sec2x

    4. ddx(y)=dydx


    Substitute all derivatives

    xdydx+y+2ydydx=sec2x+dydx

    Collect dydx terms on one side:

    xdydx+2ydydxdydx=sec2xy

    Factor out dydx:

    dydx(x+2y1)=sec2xy

    Final Answer

    dydx=sec2xyx+2y1


    Find ddin the following:

    Question 1

    Differentiate:

    2x+3y=sinx

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(sinx)

    2+3dydx=cosx

    Now solve for dydx:

    3dydx=cosx2

    dydx=cosx23


    Question 2

    Differentiate:

    2x+3y=siny

    Solution

    Differentiate both sides with respect to x:

    ddx(2x)+ddx(3y)=ddx(siny)
    2+3dydx=cosydydx

    (using chain rule on siny)

    Now collect dydx terms on one side:

    3dydxcosydydx=2

    Factor out dydx:

    dydx(3cosy)=2

    So,

    dydx=23cosy


    Question 3

    Find dydx if:

    ax+by2=cosy

    Solution

    Differentiate both sides with respect to x:

    ddx(ax)+ddx(by2)=ddx(cosy)

    Differentiate term by term

    a+b2ydydx=sinydydx

    (using chain rule on cos y)

    So,

    a+2bydydx=sinydydx

    Move all dydx terms to one side:

    2bydydx+sinydydx=a

    Factor out dydx:

    dydx(2by+siny)=a

    Final Answer

    dydx=a2by+siny


    Question 4

    Find dydx if:

    xy+y2=tanx+y

    Solution

    Differentiate both sides w.r.t. x:

    ddx(xy)+ddx(y2)=ddx(tanx)+ddx(y)

    Differentiate term by term

    1. ddx(xy)=xdydx+y
      (product rule)

    2. ddx(y2)=2ydydx

    3. ddx(tanx)=sec2x

    4. ddx(y)=dydx


    Substitute all derivatives

    xdydx+y+2ydydx=sec2x+dydx

    Collect dydx terms on one side:

    xdydx+2ydydxdydx=sec2xy

    Factor out dydx:

    dydx(x+2y1)=sec2xy

    Final Answer

    dydx=sec2xyx+2y1


    Question 5

    Find dydx if:

    x2+xy+y2=100

    Solution

    Differentiate both sides with respect to x:

    ddx(x2)+ddx(xy)+ddx(y2)=ddx(100)

    Now apply differentiation rules:

    Term-by-term differentiation

    1. ddx(x2)=2x

    2. ddx(xy)=xdydx+y

    3. (product rule)

    4. ddx(y2)=2ydydx

    5. ddx(100)=0

    Substitute into the equation

    2x+(xdydx+y)+2ydydx=0

    Group dydx terms:

    xdydx+2ydydx=2xy

    Factor out dydx:

    dydx(x+2y)=2xy

    Final Answer

    dydx=2xyx+2y


    Question 6

    Find dydx if:

    x3+x2y+xy2+y3=81

    Solution

    Differentiate both sides with respect to x:

    ddx(x3)+ddx(x2y)+ddx(xy2)+ddx(y3)=ddx(81)

    Differentiate term-by-term

    1. ddx(x3)=3x2

    2. ddx(x2y)=2xy+x2dydx
      (product rule)

    3. ddx(xy2)=y2+2xydydx
      (product rule)

    4. ddx(y3)=3y2dydx
      (chain rule)

    5. ddx(81)=0

    Substitute everything back

    3x2+2xy+x2dydx+y2+2xydydx+3y2dydx=0

    Group the terms containing dydx:

    x2dydx+2xydydx+3y2dydx=3x22xyy2

    Factor out dydx:

    dydx(x2+2xy+3y2)=(3x2+2xy+y2)

    Final Answer

    dydx=3x2+2xy+y2x2+2xy+3y2


    Question 7

    Find dydx if:

    sin2y+cosxy=kSolution

    Differentiate both sides with respect to x:

    ddx(sin2y)+ddx(cosxy)=ddx(k)

    Differentiate term by term

          1. sin2y

    Let u=siny, so expression = u2

    ddx(sin2y)=2sinycosydydx

    (because ddx(siny)=cosydydx

    So:2sinycosydydx

         2. cos(xy)

    Apply chain rule and product rule inside:

    Derivative of cosA is sinA:

    ddx(cos(xy))=sin(xy)ddx(xy)

    Now:

    ddx(xy)=xdydx+y

    (using product rule)

    So:

    ddx(cos(xy))=sin(xy)(xdydx+y)

    Right-hand side

    ddx(k)=0

    Combine all results

    2sinycosydydxsin(xy)(xdydx+y)=0

    Expand:

    2sinycosydydxxsin(xy)dydxysin(xy)=0

    Group the terms with dydx:

    dydx(2sinycosyxsin(xy))=ysin(xy)

    Final Answer

    dydx=ysin(xy)2sinycosyxsin(xy)


    Question 8

    Find dydx if:

    sin2x+cos2y=1

    Solution

    Differentiate both sides with respect to x:

    ddx(sin2x)+ddx(cos2y)=ddx(1)

    Differentiate term by term

    1. sin2x

    Let u=sinx, then u2=sin2x

    ddx(sin2x)=2sinxcosx

        2. cos2y

    Let v=cosy, so v2=cos2y

    ddx(cos2y)=2cosy(siny)dydx

    (using chain rule: derivative of cosy is sinydydx)

    So:

    ddx(cos2y)=2cosysinydydx

    Right-hand side

    ddx(1)=0

    Put everything together

    2sinxcosx2cosysinydydx=0

    Move the second term to the other side:

    2sinxcosx=2cosysinydydx

    Divide both sides by 2cosysiny:

    dydx=sinxcosxcosysiny

    Final Answer

    dydx=sinxcosxsinycosy


    Question 9

    Find dydx if:

    y=sin1(2x1+x2)

    Solution

    Let:y=sin1(2x1+x2)

    We know the identity:

    sin(2θ)=2tanθ1+tan2θComparing:

    2x1+x2=sin(2θ)if x=tanθSo let:x=tanθθ=tan1x

    Then:y=sin1(sin(2θ))=2θ=2tan1x

    Now differentiate:

    y=2tan1x

    dydx=211+x2

    21+x2


    Question 10

    Find dydx if:

    y=tan1(3xx313x2),13<x<13

    Solution

    We use the trigonometric identity:

    tan(3θ)=3tanθtan3θ13tan2θ

    Compare with the given expression:

    3xx313x2=tan(3θ)if x=tanθ

    So let:

    x=tanθθ=tan1x

    Then:y=tan1(tan(3θ))=3θ=3tan1x

    The given interval:13<x<13ensures:

    x<13θ<π63θ<π2

    Thus, tan1(tan(3θ))=3θ is valid (i.e., no ambiguity or discontinuity).

    Differentiate

    y=3tan1x
    dydx=311+x2Final Answer

    dydx=31+x2,13<x<13


    Question 11

    Find dydx if:

    y=cos1(1x21+x2),0<x<1Solution

    Let:

    y=cos1(1x21+x2)

    We use a trigonometric substitution.

    Let:

    x=tanθθ=tan1x

    Compute the inside expression:

    1x21+x2=1tan2θ1+tan2θ

    We know the identity:

    cos(2θ)=1tan2θ1+tan2θ

    Thus:

    1x21+x2=cos(2θ)

    So:y=cos1(cos(2θ))=2θ

    Since 0<x<10<θ<π4, thus 0<2θ<π2, ensuring the inverse cosine gives principal value.

    Therefore:

    y=2θ=2tan1x

    Differentiate

    dydx=211+x2

    Final Answer

    dydx=21+x2,0<x<1


    Question 12

    Find dydx if:

    y=sin1(1x21+x2),0<x<1Solution

    Let:

    y=sin1(1x21+x2)

    We use trigonometric substitution similar to the previous problem.

    Let:

    x=tanθθ=tan1x

    Then:

    1x21+x2=1tan2θ1+tan2θ

    Using the identity:

    cos(2θ)=1tan2θ1+tan2θ

    So:y=sin1(cos(2θ))

    We also know:

    cos(2θ)=sin(π22θ)

    Thus:y=sin1(sin(π22θ))=π22θ

    Since 0<x<1, 0<θ<π4, so:

    0<2θ<π2π22θπ2

    Hence the principal value is correct.

    Differentiate

    y=π22θ=π22tan1x

    dydx=211+x2Final Answer

    dydx=21+x2,0<x<1


    Question 13

    y=cos1(2x1+x2),1<x<1

    Now we will solve this correctly.

    Solution

    Let:

    y=cos1(2x1+x2)

    Use substitution:

    x=tanθθ=tan1x

    Then:

    2x1+x2=2tanθ1+tan2θ

    We know the identity:

    sin(2θ)=2tanθ1+tan2θ

    So:

    2x1+x2=sin(2θ)

    Thus:

    y=cos1(sin(2θ))

    We also know:sin(2θ)=cos(π22θ)

    So:y=π22θ=π22tan1x

    Differentiate

    y=π22tan1x

    dydx=211+x2Final Answer

    dydx=21+x2,1<x<1


    Question 14

    Find dydx if:

    y=sin1(2x1x2),12<x<12Solution

    Let:y=sin1(2x1x2)

    We use a substitution to simplify.

    Let:

    x=sinθθ=sin1x

    Then:

    1x2=1sin2θ=cosθ

    So:

    2x1x2=2sinθcosθ=sin(2θ)

    Thus:y=sin1(sin(2θ))=2θ

    The given interval:

    12<x<12

    gives:

    π4<θ<π42θ<π2

    Therefore:y=2θ=2sin1x

    Differentiate

    y=2sin1x

    dydx=211x2Final Answer

    dydx=21x2,12<x<12


    Question 15

    Find dydx if:

    y=sec1(12x21),0<x<12Solution

    Let:

    y=sec1(u),where u=12x21

    We know:

    ddx(sec1u)=1uu21dudx

    Step 1: Differentiate the inside function

    u=12x21=(2x21)1

    dudx=1(2x21)2(4x)=4x(2x21)2

    Step 2: Apply inverse secant derivative formula

    dydx=112x21(12x21)21(4x(2x21)2)

    Since 0<x<12, we have 2x21<0, so:

    12x21=12x21

    Thus:

    dydx=(2x211)11(2x21)2(2x21)2(4x(2x21)2)

    Simplify inner root:

    1(2x21)2=1(4x44x2+1)=4x24x4=4x2(1x2)

    So:

    4x2(1x2)(2x21)2=2x1x22x21

    Since 2x21<0, 2x21=12x2:

    4x2(1x2)(2x21)2=2x1x212x2

    Final Simplification

    dydx=4x(2x21)2(2x21)2x1x212x2
    dydx=4x(2x21)12x1x2

    Cancel x:

    dydx=4(2x21)121x2

    dydx=2(2x21)1x2,0<x<12Final Answer

    dydx=2(2x21)1x2