Exercise-5.3, Class 12th, Maths, Chapter 5, NCERT

Find ddin the following:

Question 1

Differentiate:

2x+3y=sinx

Solution

Differentiate both sides with respect to x:

ddx(2x)+ddx(3y)=ddx(sinx)

2+3dydx=cosx

Now solve for dydx:

3dydx=cosx2

dydx=cosx23


Question 2

Differentiate:

2x+3y=siny

Solution

Differentiate both sides with respect to x:

ddx(2x)+ddx(3y)=ddx(siny)
2+3dydx=cosydydx

(using chain rule on siny)

Now collect dydx terms on one side:

3dydxcosydydx=2

Factor out dydx:

dydx(3cosy)=2

So,

dydx=23cosy


Question 3

Find dydx if:

ax+by2=cosy

Solution

Differentiate both sides with respect to x:

ddx(ax)+ddx(by2)=ddx(cosy)

Differentiate term by term

a+b2ydydx=sinydydx

(using chain rule on cos y)

So,

a+2bydydx=sinydydx

Move all dydx terms to one side:

2bydydx+sinydydx=a

Factor out dydx:

dydx(2by+siny)=a

Final Answer

dydx=a2by+siny


Question 4

Find dydx if:

xy+y2=tanx+y

Solution

Differentiate both sides w.r.t. x:

ddx(xy)+ddx(y2)=ddx(tanx)+ddx(y)

Differentiate term by term

  1. ddx(xy)=xdydx+y
    (product rule)

  2. ddx(y2)=2ydydx

  3. ddx(tanx)=sec2x

  4. ddx(y)=dydx


Substitute all derivatives

xdydx+y+2ydydx=sec2x+dydx

Collect dydx terms on one side:

xdydx+2ydydxdydx=sec2xy

Factor out dydx:

dydx(x+2y1)=sec2xy

Final Answer

dydx=sec2xyx+2y1


Find ddin the following:

Question 1

Differentiate:

2x+3y=sinx

Solution

Differentiate both sides with respect to x:

ddx(2x)+ddx(3y)=ddx(sinx)

2+3dydx=cosx

Now solve for dydx:

3dydx=cosx2

dydx=cosx23


Question 2

Differentiate:

2x+3y=siny

Solution

Differentiate both sides with respect to x:

ddx(2x)+ddx(3y)=ddx(siny)
2+3dydx=cosydydx

(using chain rule on siny)

Now collect dydx terms on one side:

3dydxcosydydx=2

Factor out dydx:

dydx(3cosy)=2

So,

dydx=23cosy


Question 3

Find dydx if:

ax+by2=cosy

Solution

Differentiate both sides with respect to x:

ddx(ax)+ddx(by2)=ddx(cosy)

Differentiate term by term

a+b2ydydx=sinydydx

(using chain rule on cos y)

So,

a+2bydydx=sinydydx

Move all dydx terms to one side:

2bydydx+sinydydx=a

Factor out dydx:

dydx(2by+siny)=a

Final Answer

dydx=a2by+siny


Question 4

Find dydx if:

xy+y2=tanx+y

Solution

Differentiate both sides w.r.t. x:

ddx(xy)+ddx(y2)=ddx(tanx)+ddx(y)

Differentiate term by term

  1. ddx(xy)=xdydx+y
    (product rule)

  2. ddx(y2)=2ydydx

  3. ddx(tanx)=sec2x

  4. ddx(y)=dydx


Substitute all derivatives

xdydx+y+2ydydx=sec2x+dydx

Collect dydx terms on one side:

xdydx+2ydydxdydx=sec2xy

Factor out dydx:

dydx(x+2y1)=sec2xy

Final Answer

dydx=sec2xyx+2y1


Question 5

Find dydx if:

x2+xy+y2=100

Solution

Differentiate both sides with respect to x:

ddx(x2)+ddx(xy)+ddx(y2)=ddx(100)

Now apply differentiation rules:

Term-by-term differentiation

  1. ddx(x2)=2x

  2. ddx(xy)=xdydx+y

  3. (product rule)

  4. ddx(y2)=2ydydx

  5. ddx(100)=0

Substitute into the equation

2x+(xdydx+y)+2ydydx=0

Group dydx terms:

xdydx+2ydydx=2xy

Factor out dydx:

dydx(x+2y)=2xy

Final Answer

dydx=2xyx+2y


Question 6

Find dydx if:

x3+x2y+xy2+y3=81

Solution

Differentiate both sides with respect to x:

ddx(x3)+ddx(x2y)+ddx(xy2)+ddx(y3)=ddx(81)

Differentiate term-by-term

  1. ddx(x3)=3x2

  2. ddx(x2y)=2xy+x2dydx
    (product rule)

  3. ddx(xy2)=y2+2xydydx
    (product rule)

  4. ddx(y3)=3y2dydx
    (chain rule)

  5. ddx(81)=0

Substitute everything back

3x2+2xy+x2dydx+y2+2xydydx+3y2dydx=0

Group the terms containing dydx:

x2dydx+2xydydx+3y2dydx=3x22xyy2

Factor out dydx:

dydx(x2+2xy+3y2)=(3x2+2xy+y2)

Final Answer

dydx=3x2+2xy+y2x2+2xy+3y2


Question 7

Find dydx if:

sin2y+cosxy=kSolution

Differentiate both sides with respect to x:

ddx(sin2y)+ddx(cosxy)=ddx(k)

Differentiate term by term

      1. sin2y

Let u=siny, so expression = u2

ddx(sin2y)=2sinycosydydx

(because ddx(siny)=cosydydx

So:2sinycosydydx

     2. cos(xy)

Apply chain rule and product rule inside:

Derivative of cosA is sinA:

ddx(cos(xy))=sin(xy)ddx(xy)

Now:

ddx(xy)=xdydx+y

(using product rule)

So:

ddx(cos(xy))=sin(xy)(xdydx+y)

Right-hand side

ddx(k)=0

Combine all results

2sinycosydydxsin(xy)(xdydx+y)=0

Expand:

2sinycosydydxxsin(xy)dydxysin(xy)=0

Group the terms with dydx:

dydx(2sinycosyxsin(xy))=ysin(xy)

Final Answer

dydx=ysin(xy)2sinycosyxsin(xy)


Question 8

Find dydx if:

sin2x+cos2y=1

Solution

Differentiate both sides with respect to x:

ddx(sin2x)+ddx(cos2y)=ddx(1)

Differentiate term by term

1. sin2x

Let u=sinx, then u2=sin2x

ddx(sin2x)=2sinxcosx

    2. cos2y

Let v=cosy, so v2=cos2y

ddx(cos2y)=2cosy(siny)dydx

(using chain rule: derivative of cosy is sinydydx)

So:

ddx(cos2y)=2cosysinydydx

Right-hand side

ddx(1)=0

Put everything together

2sinxcosx2cosysinydydx=0

Move the second term to the other side:

2sinxcosx=2cosysinydydx

Divide both sides by 2cosysiny:

dydx=sinxcosxcosysiny

Final Answer

dydx=sinxcosxsinycosy


Question 9

Find dydx if:

y=sin1(2x1+x2)

Solution

Let:y=sin1(2x1+x2)

We know the identity:

sin(2θ)=2tanθ1+tan2θComparing:

2x1+x2=sin(2θ)if x=tanθSo let:x=tanθθ=tan1x

Then:y=sin1(sin(2θ))=2θ=2tan1x

Now differentiate:

y=2tan1x

dydx=211+x2

21+x2


Question 10

Find dydx if:

y=tan1(3xx313x2),13<x<13

Solution

We use the trigonometric identity:

tan(3θ)=3tanθtan3θ13tan2θ

Compare with the given expression:

3xx313x2=tan(3θ)if x=tanθ

So let:

x=tanθθ=tan1x

Then:y=tan1(tan(3θ))=3θ=3tan1x

The given interval:13<x<13ensures:

x<13θ<π63θ<π2

Thus, tan1(tan(3θ))=3θ is valid (i.e., no ambiguity or discontinuity).

Differentiate

y=3tan1x
dydx=311+x2Final Answer

dydx=31+x2,13<x<13


Question 11

Find dydx if:

y=cos1(1x21+x2),0<x<1Solution

Let:

y=cos1(1x21+x2)

We use a trigonometric substitution.

Let:

x=tanθθ=tan1x

Compute the inside expression:

1x21+x2=1tan2θ1+tan2θ

We know the identity:

cos(2θ)=1tan2θ1+tan2θ

Thus:

1x21+x2=cos(2θ)

So:y=cos1(cos(2θ))=2θ

Since 0<x<10<θ<π4, thus 0<2θ<π2, ensuring the inverse cosine gives principal value.

Therefore:

y=2θ=2tan1x

Differentiate

dydx=211+x2

Final Answer

dydx=21+x2,0<x<1


Question 12

Find dydx if:

y=sin1(1x21+x2),0<x<1Solution

Let:

y=sin1(1x21+x2)

We use trigonometric substitution similar to the previous problem.

Let:

x=tanθθ=tan1x

Then:

1x21+x2=1tan2θ1+tan2θ

Using the identity:

cos(2θ)=1tan2θ1+tan2θ

So:y=sin1(cos(2θ))

We also know:

cos(2θ)=sin(π22θ)

Thus:y=sin1(sin(π22θ))=π22θ

Since 0<x<1, 0<θ<π4, so:

0<2θ<π2π22θπ2

Hence the principal value is correct.

Differentiate

y=π22θ=π22tan1x

dydx=211+x2Final Answer

dydx=21+x2,0<x<1


Question 13

y=cos1(2x1+x2),1<x<1

Now we will solve this correctly.

Solution

Let:

y=cos1(2x1+x2)

Use substitution:

x=tanθθ=tan1x

Then:

2x1+x2=2tanθ1+tan2θ

We know the identity:

sin(2θ)=2tanθ1+tan2θ

So:

2x1+x2=sin(2θ)

Thus:

y=cos1(sin(2θ))

We also know:sin(2θ)=cos(π22θ)

So:y=π22θ=π22tan1x

Differentiate

y=π22tan1x

dydx=211+x2Final Answer

dydx=21+x2,1<x<1


Question 14

Find dydx if:

y=sin1(2x1x2),12<x<12Solution

Let:y=sin1(2x1x2)

We use a substitution to simplify.

Let:

x=sinθθ=sin1x

Then:

1x2=1sin2θ=cosθ

So:

2x1x2=2sinθcosθ=sin(2θ)

Thus:y=sin1(sin(2θ))=2θ

The given interval:

12<x<12

gives:

π4<θ<π42θ<π2

Therefore:y=2θ=2sin1x

Differentiate

y=2sin1x

dydx=211x2Final Answer

dydx=21x2,12<x<12


Question 15

Find dydx if:

y=sec1(12x21),0<x<12Solution

Let:

y=sec1(u),where u=12x21

We know:

ddx(sec1u)=1uu21dudx

Step 1: Differentiate the inside function

u=12x21=(2x21)1

dudx=1(2x21)2(4x)=4x(2x21)2

Step 2: Apply inverse secant derivative formula

dydx=112x21(12x21)21(4x(2x21)2)

Since 0<x<12, we have 2x21<0, so:

12x21=12x21

Thus:

dydx=(2x211)11(2x21)2(2x21)2(4x(2x21)2)

Simplify inner root:

1(2x21)2=1(4x44x2+1)=4x24x4=4x2(1x2)

So:

4x2(1x2)(2x21)2=2x1x22x21

Since 2x21<0, 2x21=12x2:

4x2(1x2)(2x21)2=2x1x212x2

Final Simplification

dydx=4x(2x21)2(2x21)2x1x212x2
dydx=4x(2x21)12x1x2

Cancel x:

dydx=4(2x21)121x2

dydx=2(2x21)1x2,0<x<12Final Answer

dydx=2(2x21)1x2

 

 

👋Subscribe to
ProTeacher.in

Sign up to receive NewsLetters in your inbox.

We don’t spam! Read our privacy policy for more info.